
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 September 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #2 reminder

1

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

2

Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Types

◦ Static Multi-Issue – at compile time, VLIW

◦ Dynamic

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

3

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

4

Register Renaming

• Loop unrolling

• If only a “name” dependence

• Architectural register doesn’t have to be updated until

written to

• Once written to it is essentially a separate register despite

the same name

l d r r1 , [1 0 2 4] ; l d r r100 , [1 0 2 4]

add r1 ,#5 ; add r100 ,#5

s t r r1 , [2 0 4 8] ; s t r r100 , [2 0 4 8]

5

l d r r1 , [1 0 2 5] ; l d r r101 , [1 0 2 5]

add r1 ,#5 ; add r101 ,#5

s t r r1 , [2 0 4 9] ; s t r r101 , [2 0 4 9]

6

Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

Need to make sure loads/stores happen in order.

• Precise exceptions (skid?)

• What happens on exception? (interrupt, branch

7

mispredict, etc)

• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?

8

Perf Counters related to Stalls

• Front-end stalls – fetch, decode, icache misses

• Back-end stalls – memory accesses

9

Instruction Level Parallelism

• Using super-scalar and/or OoO (Out of Order) execution

try to find parallelism within your serial code

• Chip companies want to speed up existing code. Why?

(it’s a pain to change, you might not have source, etc.)

10

Other Ways to get better Parallelism

11

SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon / A64 SIMD / “Scalabale Vector

Extensions” SVE

12

SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product

13

AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-XMM31

14

