
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 September 2020

http://web.eece.maine.edu/~vweaver

Announcements

• Homeworks

◦ HW#1 graded

◦ HW#2 due Friday (a reading)

• Optional Readings

◦ Pipeline Discussion: Computer Organization (RiscV)

/ Patterson and Hennesey

Section 4.11 “Real Stuff: The ARM Cortex-A53 and

Intel Core i7 Pipelines”

◦ Power/Energy: Computer Architecture / Hennesey

1

and Patterson

Section 1.5 “Trends in Power and Energy in Integrated

Circuits”

2

HW#1 Review

• bzip2 benchmark – what does it do?

• 19 billion instructions +/- 1000 or so

(this is test input maybe?)

• 13 billion cycles +/- 100 million

why would cycles vary?

• Didn’t ask, but cycles/s = 2.7GHz or so (actual=2.6)

• Didn’t ask, but roughly what’s the IPC? 1.5 or so

• Reversed: similar – HW2 will show you why I asked that
• Perf record: 6.4s (why slower?)

57.16% bzip2 bzip2 [.] mainSort

3

17.57% bzip2 bzip2 [.] BZ2_compressBlock

11.90% bzip2 bzip2 [.] mainGtU.part.0

11.20% bzip2 bzip2 [.] handle_compress.isra.2

0.94% bzip2 bzip2 [.] BZ2_blockSort

• Valgrind, 1m18s == roughly 20 times slower?

11,291,448,187 blocksort.c:mainSort [/opt/ece571/401.bzip2]

3,381,835,437 compress.c:BZ2_compressBlock [/opt/ece571/401.bzip2]

2,138,813,059 bzlib.c:handle_compress.isra.2 [/opt/ece571/401.bzip2]

1,958,107,443 blocksort.c:mainGtU.part.0 [/opt/ece571/401.bzip2]

165,396,105 blocksort.c:BZ2_blockSort [/opt/ece571/401.bzip2]

• Gprof, also 4.3s
Different results, using function entry instead of exact
instruction count for sampling?
Also, using older gcc, newer versions it’s broken on
x86 64?

4

time seconds seconds calls s/call s/call name

70.77 2.59 2.59 53 0.05 0.05 mainSort

18.58 3.27 0.68 53 0.01 0.06 BZ2_compressBlock

8.20 3.57 0.30 12223 0.00 0.00 default_bzalloc

1.09 3.61 0.04 53 0.00 0.05 BZ2_blockSort

0.82 3.64 0.03 1856468 0.00 0.00 add_pair_to_block

• Skid instructions – mov is more likely than sub?
| n = ((Int32)block[ptr[unLo]+d]) - med;

1.17 | 5f0: mov (%r10),%edx

0.61 | lea (%rdx,%r13,1),%eax

1.11 | movzbl (%r15,%rax,1),%eax

2.70 | sub %r9d,%eax

| if (n == 0) {

1.08 | cmp $0x0,%eax

instructions:uppp
| n = ((Int32)block[ptr[unLo]+d]) - med;

5

0.45 | 5f0: mov (%r10),%edx

0.86 | lea (%rdx,%r13,1),%eax

3.53 | movzbl (%r15,%rax,1),%eax

1.25 | sub %r9d,%eax

| if (n == 0) {

1.15 | cmp $0x0,%eax

6

Multi-core

• More’s law gives you lots of transistors. Hit limit of how

fast to make a single processor, so why not just put more

on the die?

• Exploits multi-programmed parallelism rather than

instruction-level parallelism

7

Multi-threaded

• SMT (simultaneous multithreading), Intel Hyperthreading

• Hyrbid of multi-core and multi-pipeline

• Your pipelines might not always be full, especially if

waiting on memory

• Why not duplicate fetch/decode logic, and have two

programs execute at once on same set of pipelines.

• If one is idle/stalled, run instructions from other thread

8

• Looks to OS as if you have two cores, but really just one

with two instruction dispatch stages

• Extra logic to make sure that pipelines used fairly, the

results get committed to the right register file, etc.

9

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

10

Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

11

◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

◦ Can actually slow down code (especially if both threads

12

trying to use same functional units, also if both using

memory heavily as cache is often shared)

◦ Security? Information Leakage?

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

13

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

14

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

15

MESI

• Modified, Exclusive, Shared, Invalid

16

Real-World Pipelining Examples (from
P&H)

• ARM Cortex-A53 (found in Pi3)

◦ Eight-stage pipeline

◦ Dynamic multi-issue, two instructions

◦ Static in-order pipeline

◦ First 3 stags fetch two insns at a time, filling a 13-entry

instruction queue (branch predictors)

◦ Pipelines: one for load, one for store, two for ALU,

one multiply, one divide, one FP/SIMD (mul/div/sqrt)

17

one FP/SIMD for other

◦ What’s the peak possible IPC?

◦ Patterson and Hennesey report SPEC CPU 2006 INT

results. Best case is hmmer (search for gene sequence)

with IPC 1.03 (CPI 0.97). Worst is mcf (public

transit vehicle scheduling) IPC 0.12 (CPI 8.56). Mostly

memory constrained.

◦ In-order so depends a lot on compiler to get good

performance.

◦ 100mW (1 core at 1GHz)

• Intel Core i7 920 (Nehalem, 2008)

18

◦ Decodes CISC instructions to micro-ops

◦ Can issue up to 6 micro-ops per cycle

◦ 14 pipeline stages

◦ dynamic out-of-order with speculation

◦ register renaming, useful with speculation, as no need

to store snapshot to undo speculation, just mark the

speculated register results as invalid

◦ Instruction fetch, fetches 16 bytes. If wrong, 15 cycle

penalty

◦ Predecode instruction buffer – transform 16 bytes (x86

insns 1-15 bytes) into x86 insns

19

◦ 18-instruction instruction queue.

◦ Micro-op decode – three decoders handle decode of

instructions that map to 1 uop. One other handles

microcode engine that produces longer sequences, up

to 4uops a cycle.

◦ Can also do micro-op fusion (fuse two different insns

into one uops, such as cmp/branch)

◦ Micro-ops go ins a 28-entry uop buffer

Loop Stream Detector – if code is in tight loop (less

than 28 insns) it can execute from this buffer and not

need to fetch.

20

◦ Instruction issue. Reservation station. Up to six uops

can be issued

◦ Finished instructions go back to reservation station

and retirement unit, wait to update register state when

determined it is no longer speculative.

◦ Once instruction hits the head of the reorder buffer,

instruction commits and is removed from re-order

buffer

◦ Even though 6 uops can issue, only 4 can be finished

a turn? What’s the peak IPC? (4)

◦ Again, SPECCPU. Best is libquantum IPC=2.2 (CPI

21

0.44). Worst, again, mcf IPC=0.37 (CPI=2.67)

◦ Where do the wasted cycles go? Stalls? But also

mis-speculation where work is done and then thrown

out.

◦ 130 Watts (2.66GHz)

22

