
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 September 2020

http://web.eece.maine.edu/~vweaver


Announcements

• HW#4 was posted. Branch Prediction.

1



Some last branch predictor things

• Can turn off branch prediction on some machines. Most

notably on the ARM1176 chip in a Raspberry Pi.

2



Branch Predictor Energy

• How much Energy does a branch predictor take?

• Often modeled as memory. Only in more complex setups

does the logic take much space.

• How much die area (how many bits) (leakage)

• How often are they updated

• Do you need to store branch history on context switch?

• What happens if you turn off branch predictor? Will

your code still run?

3



Branch Predictor Energy

• Parikh, Skadron, Zhang, Barcella, Stan

• 4 concerns:

1. Accuracy. Not affect power, but performance

2. Configuration (may affect power)

3. Number of lookups

4. Number of updates

• Tradeoff power vs time.

• brpred can be size of small cache, 10% of power

• Can use banking to mitigate

4



Branch Predictors

• can watch icache, not activate predictor if no branches

• Pipeline gating, keep track of each predicted branch

confidence. If confidence hits certain threshold, stop

speculating. Show this may or may not be good.

• Integer code, large predictors good

• FP, tight loops, predictors not as important.

5



Branch Predictor Evaluation

• (Strasser, 1999). Simulation, small branch predictor can

help energy.

• (Co, Weikle, Skadron) Formula for break even point.

Leakage matters, what brpred hides is stall cycles.

• SEPAS: A Highly Accurate Energy-Efficient Branch

Predictor (Baniasadi, Moshovos. ISLPED 2004).

Once a branch prediction reaches steady state (unlikely

to change) stop accessing/updating predictor, saving

6



energy.

• Low Power/Area Branch Prediction Using Complementary

Branch Predictors (Sendag, Yi, Chuang, Lija. IPDPS

2008)

Complementary Branch Predictor to handle the tough

cases.

7



Branch Predictors and Code Type

• What type of code is easiest to predict?

Regular Loops

Often found in large scientific “floating-point” workloads

• What is hard to predict? User input, random

data/parsing with lots of conditional branches.

“integer benchmarks”, things like compilers, parsers,

compression

8



Branch Predictor History

• IBM Stretch, 1950s

• 2-bit counters first proposed late 1970s

• Two-level, 1991

9



Branch Predictor Implementations

• Agner Fogg document, interesting. Found a bug in 2-bit

saturating counters on P1

• Haswell re-written from scratch, unknown. Too many

branches close together can cause problems

10



Caches

“Almost all programming can be viewed as an exercise in

caching.” – Terje Mathisen

First Data Cache: IBM System/360 Model 85, 1968

Good survey paper, Ajay Smith, 1982

Computer Architects don’t like to admit it, but no amazing

breakthroughs in years. Mostly incremental changes.

11



What is a cache?

• Small piece of fast memory that is close to the CPU.

• “caches” subsets of main memory

• Managed automatically by hardware (can you have a

software controlled cache? Scratchpad memory? Why

aren’t they used more? Hard to do right.)

12



Memory Wall

• Processors getting faster (and recently, more cores) and

the memory subsystem cannot keep up.

• Modern processors spend a lot of time waiting for

memory

• “Memory Wall” term coined by Wulf and McKee, 1995

13



Exploits Program Locality

• Temporal – if data is accessed, likely to be accessed

again soon

• Spatial – if data is accessed, likely to access nearby data

Not guaranteed, but true more often than not

14



Memory Hierarchy

There’s never enough memory, so a hierarchy is created of

increasingly slow storage.

• Older: CPU → Memory → Disk → Tape

• Old: CPU → L1 Cache → Memory → Disk

• Now?: CPU → L1/L2/L3 Cache → Memory → SSD

Disk → Network/Cloud

15



Cache Types

• Instruction (I$) – holds instructions, often read only

(what about self-modifying code?)

can hold extra info (branch prediction hints, instruction

decode boundaries)

• Data (D$) – holds data

• Unified – holds both instruction and data

More flexible than separate

16



Cache Circuitry

• SRAM – flip-flops, not as dense

• DRAM – fewer transistors, but huge capacitors

chips fabbed in DRAM process slower than normal CPU

logic

17



Cache Circuitry

Column Decoder

R
o

w
 D

e
c
o

d
e
r

Sense Amps

Memory Array

word line

b
it

 l
in

e

WL

!BL BL

DRAM

SRAM

WL

!BL BL

• Upside of DRAM? Smaller, can fit more.

18



• Upside of SRAM? No need to refresh.

• Which is faster/lower energy? Used to be SRAM but

not so clear anymore.

• Why not use DRAM in caches? Process tech doesn’t line

up well. Process for good capacitors makes for slower

logic.

• Recent advances (trench capacitors, etc) have changed

this a bit. IBM Power machines with large DRAM

caches.

19



UMA and NUMA

CPU CPU CPU CPU

MemMemMem

MemMemMem

UMA NUMA

• UMA – Uniform Memory Access

same speed to access all of memory

• NUMA – Non-Uniform Memory Access

accesses to memory connected to other CPU can take

longer

20



Cache Coherency

• Protocols such as MESI (Modified, Exclusive, Shared,

Invalid)

• Snoopy vs Directory

21



Cache Structure
Way 0 Way 1

line Tag Data Tag Data
0 1 00 00 00 00 0
1 1 00 10 00 00 1 00 00 00 00
2 0 0
3 0 0
4 0 0
5 0 0

. . .
b 0 0
c 0 0
d 0 0
e 0 0
f 0 0

22



Cache Associativity

• direct-mapped – an address maps to only one cache line

• fully-associative (content-addressable memory, CAM) –

an address can map to any cache line

• set-associative – an address can map to multiple “ways”

• scratchpad – software managed (seen in DSPs and some

CPUs)

23



Cache Terms

• Line – which row of a cache being accessed

• Blocks – size of data chunk stored by a cache

• Tags – used to indicate high bits of address; used to

detect cache hits

• Sets (or ways) – parts of an associative cache

24



Replacement Policy

• FIFO

• LRU

• Round-robin

• Random

• Pseudo-LRU

• Spatial

25



Load Policy

• Critical Word First – when loading a multiple-byte line,

bring in the bytes of interest first

26



Consistency

Need to make sure Memory eventually matches what we

have in cache.

• write-back – keeps track of dirty blocks, only writes back

at eviction time. poor interaction on multi-processor

machines

• write-through – easiest for consistency, potentially more

bandwidth needed, values written that are discarded

• write-allocate – Usually in conjunction with write-back

Load cacheline from memory before writing.

27



Inclusiveness

• Inclusive – every item in L1 also in L2

simple, but wastes cache space (multiple copies)

• Exclusive – item cannot be in multiple levels at a time

28



Other Cache Types

• Victim Cache – store last few evicted blocks in case

brought back in again, mitigate smaller associativity

• Assist Cache – prefetch into small cache, avoid problem

where prefetch kicks out good values

• Trace Cache – store predecoded program traces instead

of (or in addition to) instruction cache

29



Virtual vs Physical Addressing

Programs operate on Virtual addresses.

• PIPT, PIVT (Physical Index, Physical/Virt Tagged) –

easiest but requires TLB lookup to translate in critical

path

• VIPT, VIVT (Virtual Index, Physical/Virt Tagged) – No

need for TLB lookup, but can have aliasing between

processes. Can use page coloring, OS support, or ASID

(address space id) to keep things separate

30


