ECE 571 – Advanced Microprocessor-Based Design Lecture 13

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

30 September 2020

Announcements

• Don't forget HW#4. A little trickier than previous as you run on 3 different machines

HW#3 Review – The Benchmarks

- sleep does nothing
- stream stresses memory subsystem
- matrix loads the CPU
- iozone disk I/O

HW#3 Review – The System

Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
 20MB cache, 22nm, 90W TDP

https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-ca

html

- 80GB DDR4 RAM
- Regular spinning hard drive

HW#3 Energy

Energy

	sleep	stream	matrix	iozone	
cores	0.00	0.00	0.0	0	
sleep	427	465	305	49	
ram	55	85	45	7.8	
time	10.0	7.4	5.2s	1.0	

HW#3 Power

Power

	sleep	stream	matrix	iozone
cores	0.00	0.00	0.0	0
pkg	42.7	63	58	49
ram	5.5	11	9	7.8

HW#3 Notes

- highest power pkg: stream
- highest power dram: stream
- cores: always zero
 This is likely a bug with the Haswell-EP chips
 Intel slow to acknowledge this
- server class does not have integrated GPU
- guesses: old, virtual machine
- HPL (20k): pkg: 117W dram: 11W
- stream stresses memory. iozone, CPU is waiting?

HW#3 Energy-Delay

Energy-delay

	1	2	4	8	16	32	64
E	13.9k	8.3k	7k	4.4k	4.8k	5.2k	5.7k
time	220s	120s	79s	39s	35s	36s	47s
ED	3058k	996k	553k	171k	168k	187k	267k
ED2	672M	120M	44M	7M	5.8M	6.7M	12M
Power	63W	69W	89W	112W	137W	144W	121W

HW#3 Energy-Delay Discussion

- interesting, half class got results where 32 best
- a) fastest time = 16
- b) lowest energy = 8
- c) lowest E-D = 16
- d) lowest E-D-D = 16
- e) scaling? only can show strong (problem size same)
 o Poorly written benchmark? (possible)
 o Not enough memory? (unlikely, benchmark from 2001)
- f) 32 threads, but only 16 cores

Oh No, More Caches!

Cache Terms

- Line which row of a cache being accessed
- Blocks size of data chunk stored by a cache
- Tags used to indicate high bits of address; used to detect cache hits
- Sets (or ways) parts of an associative cache

Replacement Policy

- FIFO
- LRU
- Round-robin
- Random
- Pseudo-LRU
- Spatial

Load Policy

 Critical Word First – when loading a multiple-byte line, bring in the bytes of interest first

Consistency

Need to make sure Memory eventually matches what we have in cache.

- write-back keeps track of dirty blocks, only writes back at eviction time. poor interaction on multi-processor machines
- write-through easiest for consistency, potentially more bandwidth needed, values written that are discarded
- write-allocate Usually in conjunction with write-back Load cacheline from memory before writing.

Inclusiveness

- Inclusive every item in L1 also in L2 simple, but wastes cache space (multiple copies)
- Exclusive item cannot be in multiple levels at a time

Other Cache Types

- Victim Cache store last few evicted blocks in case brought back in again, mitigate smaller associativity
- Assist Cache prefetch into small cache, avoid problem where prefetch kicks out good values
- Trace Cache store predecoded program traces instead of (or in addition to) instruction cache

