
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 18

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 October 2020

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted

• Project will be coming up

1



Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

• Security

2



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

3



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

4



Page Lookup

Simplest would just be a table, with virtual page as index

and physical page as value.

5



Page Tables

• Collection of Page Table Entries (PTE)

• Some common components:

• ID of owner

• Virtual Page Number

• valid bit,

• location of page (memory, disk, etc)

• protection info (read only, etc)

• page is dirty, age (how recent updated, for LRU)

6



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

7



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

8



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

• What do you do if you have more than 32-bits?

◦ 64-bit x86 has 4-level page tables (256TBv/64TBp)

44/40-bits?

◦ Push by Intel for 5-level tables (128PBv/4PBp)

57 bits?

◦ What if you have unused bits? People use them,

causes problems later. AMD64 canonical addresses.

9



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.

10



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

11



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

12



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

13



Page Table Caches

• Why walk the whole page table if likely you’ve walked

similar before

• Many processors have page table caches

• Translation Caching: Skip, Don’t Walk (the Page Table)

(ISCA’10)

14



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (intel only added ASID support

recently)

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux (security issue with Meltdown bug!)

15



What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

16



(by the hardware on x86)

• It no physical mapping in page table, then page fault

happens

17



What happens on a page fault

• The OS process structure has info on what memory

regions are valid and what should be there (text/data

comes from executable on disk, bss zeroed pages,

heap/stack might be auto-allocated zeroed pages)

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk.

18



◦ Demand paging.

◦ Needs to find room in physical memory.

◦ If no free space available, needs to kick something out.

Disk-backed (and not dirty) just discarded.

Disk-backed and dirty, written back.

◦ Memory can be paged to disk. Eventually can OOM.

◦ Memory is then loaded, or zeroed, and PTE updated.

◦ Can it be shared? (zero page)

• “invalid” – segfault

19



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write

20


