ECE 571 – Advanced Microprocessor-Based Design Lecture 23

Vince Weaver http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 October 2020

Announcements

- HW7 was assigned
- Midterm on Friday
- Project will be posted
- Useful readings:
 - "A performance and power comparison of modern highspeed DRAM arch" from MEMSYS 2018

 "DRAM Refresh Mechanisms, Penalties, and Tradeoffs" Bhati, Chang, Chishti, Lu and Jacob. IEEE transactions on Computers, 2016.

Static RAM (SRAM) Review

- Used on chip: caches, registers, etc. Made in same process as CPU
- 6 transistors (or 4 plus hard-to make resistors with high static power)
- Cross-coupled inverters
 - \circ For read, precharge both bitlines. Raise wordline.
 - Lots of capacitance so hard to swing whole way, so sense amp which amplified the small voltage shift
 - For write, set bitline and not-bitline, set wordline.

Overpowers inverters

- Clocked or no, clocked saves power (synchronous vs asynchronous. synchronous can be pipelined and only operate sense amp when needed)
- Bitlines might be braided to avoid noise

Why not have large SRAM

- SRAM is low power at low frequencies but takes more at high frequencies
- It is harder to make large SRAMs with long wires
- It is a lot more expensive while less dense (Also DRAM benefits from the huge volume of chips made)
- Leakage for large data structures
- Price: 8MB for \$163

Diagrams

DRAM

SRAM

DRAM

- Single transistor/capacitor pair. (can improve behavior with more transistors, but then less dense)
- In 90nm process, 30fF capacitor, leakage in transistor 1fA. Can hold charge from milliseconds to seconds.
- DRAMs gradually lose charge, need to be refreshed.
- Need to be conservative. Refresh every 32 or 64ms (if 8192 rows, then 64ms/8192 is 7.8us)
- DRAM read is destructive, always have to write back

Low Level

- Planar (old)
- Trench Capacitors (transistors above)
- Stacked Capacitors (transistors below)

Memory Packaging

- DIMM dual inline memory module
- Why dual? Replaced SIMMs
- SIMM had pins on both side but just duplicated signal
- SIMM also 32-bit, when modern systems moved to 64bit bus (P5 pentium) you needed to have SIMMs in pairs
- DIMMs 64-bit memory bus and you only needed to add

one module at a time

DIMMSs

- How many chips on DIMM? 8? 9?
 9 usually means ECC/parity
- Chips x1 x4 x8 bits, how many get output at a time. Grouped together called a "bank"
- Banks can mask latency, sort of like pipelining. If takes 10ns to respond, interleave the request.
- DIMM can have independent "ranks" (1 or 2 per DIMM), each with banks, each with arrays. (Rank is like a full

additional 64-bit memory dimm enabled with chip-select, but on same package)

- Layout, multiple mem controllers, each with multiple channels, each with ranks, banks, arrays
- Has SPD "serial presence detect" chip that holds RAM timings and info. Controlled by smbus (i2c)
- SODIMM smaller form factor for laptops "small outline"

Refresh

- Need to read out each row, then write it back. every 32 to 64ms
- Old days; the CPU had to do this. Slow Digression: what the Apple II does
- Newer chips have "auto refresh"

Low-Level Memory Bus

- JEDEC-style. address/command bus, data bus, chip select
- Row address sends to decoder, activates transistor
- Transistor turns on and is discharged down the column rows to the sense amplifier which amplifies
- The sense amplifier is first "pre-charged" to a value halfway between 0 and 1. When the transistors are enabled the very small voltage swing is amplified.

• This goes to column mux, where only the bits we care about are taken through

Memory Access

- CPU wants value at address (cache miss?)
- Passed to memory controller
- Memory controller breaks into rank, bank, and row/column
- Proper bitlines are pre-charged
- Row is activated, then \overline{RAS} , row address strobe, is signaled, which sends all the bits in a row to the sense

amp. can take tens of ns.

- Then the desired column bits are read. The \overline{CAS} column address strobe sent.
- Again takes tens of ns, then passes back to memory controller.
- Unlike SRAM, have separate CAS and RAS? Why? Original DRAM had low pincount.
- Also a clock signal goes along. If it drives the device it's synchronous (SDRAM) otherwise asynchronous

Memory Controller

- Formerly on the northbridge
- Now usually on same die as CPU

Advances in Memory Technology

In general the actual bit array stays same, only interface changes up.

- Clocked
- Asynchronous
- Fast page mode (FPM) row can remain active across multiple CAS.
- Extended Data Out (EDO) like FPM, but buffer

"caches" a whole page of output if the CAS value the same.

- Burst Extended Data Out (BEDO) has a counter and automatically will return consecutive values from a page
- Synchronous (SDRAM) drives internal circuitry from clock rather than outside RAS and CAS lines. Previously the commands could happen at any time. Less skew.

DDR Timing Diagram

Historical Memory Type Rundown

SDRAM

• SDRAM - 3.3V

- transfer and both rising and falling edge of clock
- 2.5V
- Adds DLL to keep clocks in sync (but burns power)

- 2003
- runs internal bus half the speed of data bus
- 4 data transfers per external clock
- memory clock rate * 2 (for bus clock multiplier) * 2 (for dual rate) * 64 (number of bits transferred) / 8 (number of bits/byte) so at 100MHz, gives transfer rate of 3200MB/s.

- not pin compatible with DDR3.
- 1.8 or 2.5V

- 2007
- internal doubles again
- Up to 6400MB/s, up to 16GB DIMMs.
- $\bullet~1.5V~\text{or}~1.35V$

- 2014
- I don't *think* things are doubled again, but it apparently somehow multiplexes for higher bandwidth
- 1.2V, 2.5V auxiliary wordline boost
- 1600 to 3200MHz. 2133MT/s
- Up to 64GB DIMMs

- parity on command/address busses, crc on data busses.
- Data bus inversion
- Pins closer toegher

- 2020
- Doubled bandwidth over DDR4
- 1.1V

GDDR

- Despite similar name, not related to same DDR version
- GDDR2 graphics card, but actually halfway between DDR and DDR2 technology wise
- GDDR3 like DDR2 with a few other features. lower voltage, higher frequency, signal to clear bits
- GDDR4 based on DDR3, replaced quickly by GDDR5
- GDDR5 based on DDR3

LPDDR

- Despite similar name, not related to same DDR version
- LP-DDR
- LP-DDR2 low power states, 1.2V, different bus
- LP-DDR3 higher data rate
- LP-DDR4 change from 10-bit DDR to 6-bit SDR bus
- LP-DDR4X I/o voltage 0.6V

• LP-DDR5 – (2019) 6.4Gbit/s/pin, differential clocks

DDRL

- DDR3L low voltage, 1.35V (not same as LPDDR3) DDR3U (ultra-low voltage) 1.25V
- DDR4L does not exist?

More obscure Memory Types

- RAMBUS RDRAM narrow bus, fewer pins, could in theory drive faster. Almost like network packets. Only one byte at time, 9 pins?
- FB-DIMM from intel. Mem controller chip on each dimm. High power. Requires heat sink? Point to point.
 If multiple DIMMs, have to be routed through each controller in a row.
- VCDRAM/ESDRAM adds SRAM cache to the DRAM

• 1T-SRAM – DRAM in an SRAM-compatible package, optimized for speed

