ECE 571 – Advanced Microprocessor-Based Design Lecture 25

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

2 November 2020

Announcements

- Homework
- Midterms are graded, will be sent out soon
- HW#8 will be sent out soon
- Useful readings:
 - "A performance and power comparison of modern highspeed DRAM arch" from MEMSYS 2018

 "DRAM Refresh Mechanisms, Penalties, and Tradeoffs" Bhati, Chang, Chishti, Lu and Jacob. IEEE transactions on Computers, 2016.

Reducing Refresh

- DRAM Refresh Mechanisms, Penalties, and Trade-Offs by Bhati et al.
- Refresh hurts performance:
 - Memory controller stalls access to memory being refreshed
 - Refresh takes energy (read/write)
 On 32Gb device, up to 20% of energy consumption and 30% of performance

Refresh-related Security Issues

• Rowhammer

Async vs Sync Refresh

- Traditional refresh rates
 - Async Standard (15.6us)
 - Async Extended (125us)
 - SDRAM depends on temperature, 7.8us normal temps (less than 85C) 3.9us above
- Traditional mechanism
 - \circ Distributed, spread throughout the time
 - Burst, do it all at once (not SDRAM, just old ASYNC or LPDDR)

- Auto-refresh
 - \circ Also CAS-Before RAS refresh
 - \circ No need to send row, RAM has a counter and will walk the next row on each CBR command
 - Modern RAM might do multiple rows
- Hidden refresh refresh the row you are reading? Not implemented SDRAM

SDRAM Refresh

- Autorefresh (AR)
 - Device brought idle by precharging, then send AR (autorefresh)
 - \circ Has a counter that keeps track of which row it is on, updates on each AR
 - The memory controller needs to send proper number of AR requests
 - LPDDR is a bit more complicated
 - Takes power, as all of SDRAM active while refreshing

- Self-Refresh (SR)
 - \circ Low-power mode
 - All external access turned off, clocks off, etc.
 - \circ Has simple analog timer that generates clock for sending refresh pulses
 - \circ Takes a few cycles to come out of SR mode
 - LPDDR has extra low-power features in SR mode Temperature compensated self-refresh (temp sensor) Partial-array self refresh (PASR), only refresh part of memory

Refresh Timings

- Most SDRAM have 32 or 64ms retention time (tREFW)
- One AR command should issue in interval time (tREFI)
- A DDR3 with tREFI of 7.8us and tREFW of 64ms then 8192 refreshes
- Spec allows delaying refreshes if memory is busy

DRAM Retention Time

- Varies per-process, per chip
- Some chips over 1s, but have to handle worst-case scenario

What can be done to improve refresh behavior

- Can you only refresh RAM being used? How do we know if values no longer important? free()? trim() command sort of like on flash drives?
- Probe chip at boot to see what actual retention time is, only refresh at that rate? Does chip behavior change while up?

Advanced/Recent DRAM Developments

DDR4 Speed and Timing

- Higher density, faster speed, lower voltage than DDR3
- 1.2V with 2.5V for "wordline boost" This might be why power measurement cards are harder to get (DDR3 was 1.5V)
- 16 internal banks, up to 8 ranks per DIMM
- Parity on command bus, CRC on data bus
- Data bus inversion? If more power/noise caused by

sending lots of 0s, you can set bit and then send them as 1s instead. New package, 288pins vs 240pins,

- pins are 0.85mm rather than 1.0mm Slightly curved edge connector so not trying to force all in at once
- Example: DDR4-2400R Memory clock: 300MHz, I/O bus clock 1200MHz, Data rate 2400MT/s, PC4-2400, 19200MB/s (8B or 64 bits per transaction) CAS latency around 13ns

HBM RAM

HBM/HBM2 RAM

• HBM

- High bandwidth memory
- \circ 3d-stacked RAM, stacked right on top of CPU
- \circ Silicon through VIA
- Higher bandwidth, two 128-bit channels per die
- 4096 bit wide bus compared to GDDR5 where you might have 32-bit channel times 16 chips for 512 bit
- HBM2
 - \circ Eight dies per stack, up to 2GT/s

• HBM3/HBM4

• Specified, doesn't exist yet? HPC?

 In newer GPUs, AMD and NVIDIA. HBM2 in new Nvidia Pascal Tesla P100

Hybrid Memory Cube

- Samsung and Micron
- vaguely similar to HBM
- discontinued in 2018
- Hybrid Memory Cube, Micron, 15x as fast as DDR3. Fujitsu Sparc64 2015 has some

Future

NVRAM

- Core Memory
 - Old days, tiny ferrite cores on wire
 - Low density
- MASK ROM/EPROM/EEPROM
- Battery backed (CMOS) RAM
- FeRAM/Magnetoram store in magnetic field

- MRAM (magnetic RAM), Spin-transfer-torque (STT-MRAM)
- Flash NAND/NOR
 - Only so many write cycles (thousands) as opposed to billions+ for DRAM
 - High power to erase
 - Often have to erase in large blocks, not bit by bit
 - Wear leveling
- Millipede memory, tiny bumps, MEMS devices to read

- Phase change RAM (see below)
- Memristors (see below)
- Intel/Micron Optane/3D-Xpoint (see below)

Phase Change RAM

- Material
 - \circ bit of material can be crystalline or amorphous
 - \circ resistance is different based on which
 - \circ need a heater to change shape
 - \circ needs a lot of current to change phase
 - \circ chalcogenide glass used in CD-Rs
 - heating element change from amorphous (high resistance, 0) to crystalline (low resistance, 1)
 - \circ Amorphous if you heat and quench, crystal if cook a

while

- temp sensitive, values lost when soldering to board (unlike flash)
- Newer methods might involve lasers and no phase change?
- Features
 - Faster write performance than flash (slower than DRAM)
 - Can change individual bits (flash need to erase in blocks)
 - \circ can potentially store more than one bit per cell

- \circ better than flash (takes .1ms to write, write whole blocks at once
- 100ns (compared to 2ns of DRAM) latency
- Longevity
 - \circ Flash wears out after 5000 writes, PCM millions
 - Flash fades over time. Phase change lasts longer as long as it doesn't get too hot.
 - But also, unlike DRAM, a limit on how many times can be written.
- Can you buy phase change ram?
 Micron sold from 2012-2014? Not much demand

Memristors

- resistors, relationship between voltage and current
- capacitors, relationship between voltage and charge
- inductors, relationship between current and magnetic flux
- memristor, relationship between charge and magnetic flux; "remembers" the current that last flowed through it
- Lot of debate about whether possible. HP working on memristor based NVRAM

Intel/Micron Optane/3D-Xpoint/QuantX

- 3D-Crosspoint (intel) QuantX (Micron)
- Faster than flash, more dense than DRAM
- Can get it in an SSD (so no special hardware needed)
- Also as special slot on motherboard (or even DIMM)
- 3D grid, not every bit needs a transistor so can be 4x denser than DRAM. Bit addressable.
- Intel very mysterious about exactly how it works ReRAM (store in changed resistance) but is it phasechange?

- Intel denies everything
- ReRAM works by having a dielectric layer and blasting channels through it.
- Can you buy Optane? April 24th 2019? Special M.2 slot on Gen7 (Kaby lake? motherboards)

For now, 16GB and 32GB modules, using like a cache of your hard disk.

NVRAM Operating System Challenges

- How do you treat it? Like disk? Like RAM?
- Do you still need RAM? What happens when OS crashes?
- Problem with treating like disk is the OS by default caches/ copies disk pages to RAM which is not necessary if the data is already mapped into address space
- Challenges: Mapping into memory? No need to copy from disk?

- Problems with NVRAM: caches.
- Memory is there when reboot like it was, but things in caches lost.
- So like with disks, if the cache and memory don't match you're going to have problems trying to pick up the pieces.

