ECE 571 – Advanced Microprocessor-Based Design Lecture 28

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

9 November 2020

Announcements

- HW#9 will be posted, read AMD Zen 3 Article
- Remember, no class on Wednesday

When can we scale CPU down?

- System idle
- \bullet System memory or I/O bound
- Poor multi-threaded code (spinning in spin locks)
- Thermal emergency
- User preference (want fans to run less)

Non-CPU power saving

- RAM
- GPU
- Ethernet / Wireless
- Disk
- PCI
- USB

GPU power saving

- From Intel lesswatts.org
 - Framebuffer Compression
 - Backlight Control
 - Minimized Vertical Blank Interrupts
 - Auto Display Brightness
- from LWN: http://lwn.net/Articles/318727/
 - Clock gating or reclocking
 - Fewer memory accesses: compression.
 Simpler background image, lower power

- Moving mouse: 15W. Blinking cursor: 2W
- \circ Powering off unneeded output port, 0.5W
- LVDS (low-voltage digital signaling) interface, lower refresh rate, 0.5W (start getting artifacts)

More LCD

- When LCD not powered, not twisted, light comes through
- Active matrix display, transistor and capacitor at each pixel (which can often have 255 levels of brightness).
 Needs to be refreshed like memory. One row at a time usually.

Ethernet

- PHY (transmitter) can take several watts
- WOL can draw power when system is turned off
- Gigabit draw 2W-4W more than 100Megabit 10 Gigabit 10-20W more than 100Megabit
- Takes up to 2 seconds to re-negotiate speeds
- Green Ethernet IEEE 802.3az

WLAN

- power-save poll go to sleep, have server queue up packets. latency
- Auto association how aggressively it searches for access points
- RFKill switch
- Unnecessary Bluetooth

Disks

- \bullet SATA Aggressive Link Power Management shuts down when no I/O for a while, save up to 1.5W
- Filesystem atime
- Disk power management (spin down) (lifetime of drive)
- VM writeback less power if queue up, but power failure potentially worse

Soundcards

• Low-power mode

USB

- autosuspend. Can sometimes cause issues
- off by default as some USB you disable don't come back

Results from REU measurement

- ATX measurement
- USB measurement
 How much power does your keyboard use?
 Keyboard latency

A History of Power Management on x86

Halt Instruction

- Oldest power-saving interface on x86
- Tells CPU to stay idle until an interrupt comes in
- 486-DX4 and later enters low-power mode
- Ring 0. The OS does this when idle
- Similar instruction available on 65c816
- \bullet ARM has wfi in ARMv7 and maybe hlt in ARMv8?

APM – Advanced Power Management

- For laptops
- Developed by Intel and Microsoft, 1992
- Made obsolete by ACPI
- Full On / APM Enabled / Standby / Suspend or Hibernate / Off
- Calls to BIOS. BIOS often buggy.

ACPI – Advanced Configuration and Power Interface

- http://www.acpi.info/presentations/ACPI_Overview.pdf
- Developed by Intel, Microsoft and Toshiba, 1996 Later HP and Phoenix
- Full ACPI interpreter needed.
- APM was a black box to Operating System. ACPI works with OS
- ACPI code in theory provided by Intel or similar, no need for each manufacturer to implement (like APM)

- OS-directed power management
- Hardware registers for interface
- BIOS provides tables, motherboard initialization

ACPI Sleep States

- Global vs Sleep
- G0/S0 Working
- G1 Sleeping
 - \circ S1 Caches flushed, CPU stopped, CPU and RAM power maintained
 - \circ S2 CPU powered OFF
 - S3 Standby, Sleep, Suspend to RAM. (RAM still on)
 - \circ S4 Hibernate/Suspend to Disk memory to disk
- G2 (S5) "Soft Off" power off, but power still supplied

to power switch and wake on lan, etc

• G3 – "Mechanical Off" – all power removed

ACPI C-States (Idle)

- C0 operating
- C1 Halt processor not executing, but can start nearly instantaneously (Intel C1E lower voltage too)
- C2 Stop-Clock all state is stored, but might take some time to get going again (C2E lower voltage)
- C3 Sleep Processor does not keep cache coherent, but otherwise holds state
- Processor specific (Haswell up to C10)

ACPI P-States (Performance/Operational)

- actual values can sometimes be configured via MSR access.
- Some V/F combinations unstable/unsafe so BIOS only exports known good combinations
- P0 max power and frequency
- P1 less than P0, DVFS
- P2 less than P1, DVFS
- Pn less than P(n-1), DVFS

ACPI T-States

- throttling
- Linear reduction in power, linear reduction in performance
- Does not save Energy! (halve the frequency, double the time)
- Mostly used for passive cooling

ACPI D-States

- for devices such as modems, Cd-ROM, disk drive
- D3 can be hot or cold (hot has aux power and can request being moved back up, cold it is turned off)

CPU Scaling

- Intel SpeedStep
- Enhanced speed step. Change V and F at different points. Slower to change frequency if V not changed first. Bus clock keeps running even as PLL shut down 10ms transition
- AMD PowerNow! (laptop) Cool'n'Quiet (desktop)
- VIA PowerSaver/LongHaul Fine grained DVFS

- p4-clockmod mainly for thermal management, skip clocks, hurt performance without saving energy (throttling)
- IBM EnergyScale
- Transmeta LongRun leakage varies due to process variation Longrun2 monitors performance/leakage and varies Vdd and Vt

DVFS

- Voltage planes on CMP might share voltage planes so have to scale multiple processors at a time
- DC to DC converter, programmable.
- Phase-Locked Loops. Orders of ms to change. Multiplier of some crystal frequency.
- Senger et al ISCAS 2006 lists some alternatives. Two phase locked loops? High frequency loop and have programmable divider?

 Often takes time, on order of milliseconds, to switch frequency. Switching voltage can be done with less hassle.

Non-x86 Power Saving

IBM EnergyScale

- Thermal reporting
- Static and Dynamic Power Save
- "Power Folding" reduce the number of CPUs reported to the OS until they are all busy
- Power Capping (like RAPL)
- Fan Control Avoid "over-cooling"

- Processor Nap 2ms to wake up
- Processor Winkle (as in Rip Van) 10-20ms to wake up, 95% of power

ARM Cortex A9 (Pandaboard)

- Cortex-A9 Technical Reference Manual, Chapter 2.4 Power Management
- Energy Efficient Features
 - Accurate branch prediction (reduce number of incorrect fetch)
 - Physically addressed caches (reducing number of cache flushes)
 - Use of micro TLBs

- caches that use sequential access information? reduce accesses to tags
- small instruction loops can operate without access icache
- Potentially separate power domains for CPU logic, MPE (multi-media NEON), and RAMs
- Full-run mode
- Run with MPE disabled
- Run with MPE powered off

- Standby entered with wfi instruction. Processor mostly shutdown except part waiting for interrupt
- Dormant caches still powered
- Shutdown

Pandaboard Power Stats

- Wattsuppro: 2.7W idle, seen up to 5W when busy
- http://ssvb.github.com/2012/04/10/cpuburn-arm-cortexa9.html
- With Neon and CPU burn: Idle system 550 mA 2.75W cpuburn-neon 1130 mA 5.65W cpuburn-1.4a (burnCortexA9.s) 1180 mA 5.90W ssvb-cpuburn-a9.S 1640 mA 8.2W

Operating System Power Saving Strategies

- We look primarily at Linux, as it is open source and technical debates happen in the open
- Windows and OSX often have measurably better laptop Energy behavior due to tuning and better hardware testing

Governors

- ondemand dynamically increase frequency if at 95% of CPU load introduced in 2.6.9
- performance run CPU at max frequency
- conservative increase frequency if at 75% of load
- powersave run CPU at minimum frequency
- userspace let the user (or tool) decide

Governors – cont

- Various tunables under /sys/devices/system/cpu
- Can trigger based on ACPI events (power plug in, lid close)
- Laptop tools
- cpufreq-info and cpufreq-set Need to be root

User Governors

- typically can only update once per second
- ondemand people claim it reacts poorly to bursty behavior
- Powernowd scale based on user and sys time
- cpufreqd
- Obsolete with introduction of "ondemand" governor?

Sources of Info for Governors

- System load
- performance counters
- input from user?

TurboBoost

- Nehalem/Ivy Bridge/Sandy Bridge (AMD has similar Turbo CORE)
- Some Core2 had similar "Intel Dynamic Acceleration"
- Kicks in at highest ACPI Pstate
- "Dynamic Overclocking"

TurboBoost – from HotChips 2011 Slides

- Monitors power, current, thermal limits, overclocks
- 100 uarch events, leakage function of temp and voltage
- P1: guaranteed stable state
 P0: turbo boost, maximum possible
- 12 temp sensors on each core
- PECI an external microcontroller, used to control fans, package power

TurboBoost example

- From WikiPedia Intel_Turbo_Boost article
- Core i7-920XM
- Normal freq 2.0GHz
- 2/2/8/9 number of 133MHz steps above with 4/3/2/1 cores active
- 2.26GHz, 3.06GHz, 3.20GHz

