
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 29

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 November 2020

http://web.eece.maine.edu/~vweaver

Announcements

• HW10 will be assigned, another reading

• Project Topics

• RAPL info leak in the news

1

Recent Intel Errata

• Mitigations for Jump Conditional Code Erratum, Version

1, Intel, November 2019

• Sandybridge and newer

• CPU has a micro-op cache (separate than instruction

cache)

• If jump-related uop straddles a 32B or 64B bound-

ary (due to cache lines) unexpected things can happen

(what?)

• This includes returns, fused opcodes, etc

2

• HW Fix: microcode update, prevents lines with code like

this being cached, can hurt performance

• SW Fix: modify the assembler to not generate jumps in

those locations. Hurts everyone even AMD?

3

The AMD Zen 3 Microarchitecture

4

AMD Zen 3 Ryzen Deep Dive Review:
5950X, 5900X, 5800X and 5600X Tested

• By Ian Cutress and AndreiFrumusanu

5

Page 1 – Background

• Zen3 doing better than Intel

• Use same motherboard

• Six to 16 cores

• DDR4-3200

• 20 lanes PCIe4

• Ryzen 9 5950X 16 cores / 32 threads 3.4GHz, Turbo up

to 5GHz

• 64MB L3 cache

• Up to 142W

6

• Chiplets

◦ Each chiplet with 8 cores

◦ 7nm (TSMC, Global foundries drop out)

◦ 8-core base, with all access to L3 (Zen2 was 4-core

base)

• Chip made of chiplets connected via IO die

◦ Connected via Infinity Fabric

◦ I/O die at 14nm (Glofo) EPYC (more complex) 12nm

(Glofo) consumer

◦ Consumer with up to 16 cores have 24 PCIe 4.0 lanes

(intel stuck at 3.0)

7

◦ EPYC with 64 cores, 8 memory channels, 128 PCIe

4.0 lanes

• Zen3 not incremental, new design

• Branch predictor in Zen2 was actually for Zen3

• 19% better IPC vs Zen2

8

Page 2 – IPC Increase

• SMT

• i-cache 32k, 8-way

• op-cache 4k

• d-cache 32k, 8-way

• L2 512k 8-way

• decode 4ins/cycle or 8ins/cycle frop opcache

• dispatch 6ins/cycle to fp/int

• 3 memory ops/cycle (2 can be stores)

• L1 64entry TLB I and D, all sizes

9

• L2 512 I, 2k D, all but 1G

• two 256 bit multi/accumulate per cycle

• Changes since Zen2

◦ 2k larger L1 BTB (bdpred)

◦ improved branch predictor

◦ no-bubble branch prediction

◦ faster recovery from mispredict

◦ higher load/store bandwidth

◦ faster FMAC

10

Page 3 – Front End Update

• TAGE branch predictor

◦ long histories, tagged to avoid aliasing

◦ Seznec and Michoud, 2006, JILP A Case for Partially

TAgged GEometric history length branch prediction

◦ Hybrid branch predictor

◦ Tag a branch scenario, not just by address

◦ Finer grained granularity, can have different sized his-

tory, possibly multiple for each address

• redistributed BTB

11

• larger ITA (indirect target array)

• lower mispredict latency

• optimized l1 icache – improved prefetching, pull from L2

into L1

• maximum IPC is 6

• 192 physical registers (how many arch registers?)2

• 10 issue per cycle (4 ALU, 3AGU, 1 dedicated branch, 2

st data)

• OOOwindow 256 entries. small compared to Intel

• FMAC 4 cycles rather than 5

12

Page 4 – Load / Store

• +4 TLB walkers? for a total of 6, meaning walk the

page tables

• L2 TLB only covers 1/4 of L3 cache

• 3 loads/2 stores a cycle

• improved REP MOVS performance

• 32MB L3 cache, latency +7 now 46 cycles

• private L2 cache, L3 filled with L2 victims (mostly

exclusive)

• L2 latency of 12-cycles

13

• 64 / 192 outstanding misses

14

Page 5 – Cache Performance

• L1D 4-cycles

• prefetcher less aggressive in some ways

• mysteriously new cache replacement policy

• Frequency Ramping

◦ faster transfer from sleep to wakeup

15

Page 6 – new improved instructions

• improved FMA, 4 cylces, same as Intel

• VPCLMULQDQ – carryless multiply of one quadword

(64-bit) subset of vector (256 bit) register by another,

configurable which gets multiplied by what

• various speed changes

• x87 still supported

16

Page 7 – Frequency

• 5GHz though not hyped

17

Page 8 – TDP/Power Draw

• complicated

18

Page 9 – Benchmarks

• SPEC 2006/2017

• lots of games

19

Tickless idle / NOHz

• Gets rid of the periodic timer tick (wakeups use Energy)

• Linux typically has periodic timer interrupt at 100, 250,

or 1000Hz. Used to implement various timers, account-

ing, and context switch. Waste of energy if system is

idle! (also, what if large IBM system with hundreds of

VMs all doing nothing but ticking?)

• Use timers, only schedule a wakeup if needed

• Want to limit wakeups, as they bring CPU out of sleep

20

mode or idle

• Group close-enough timers together. deferrable timers

• Depends on userspace staying quiet if possible.

Userspace does foolish stuff, like poll for file changes or

drive status, blinking cursor, etc.

• Semi-related “NOHz tasks”: Turn off all interrupts, turn

CPU into compute core for HPC

21

Suspend

• Linux supports three states:

1. Standby – minimal latency, higher energy

2. Suspend to RAM – similar to standby, lower energy.

Everything except RAM refresh and wakeup events

turned off

3. Suspend to Disk – even lower energy, high latency

22

Suspend to RAM

• Platform driver provides suspend-to-ram interface

• Often a controller supports fans, batteries, button

presses, wakeup events, etc.

• ACPI interpreter runs in kernel, reads table or AML,

essentially takes program from BIOS and runs in kernel

interpreter

• PCI has D states, D0 (awake) to D3 (asleep). D1 and

D2 are in between and optional and not used

23

• User can start suspend to RAM via ioctl or writing

“mem” to /sys/power/state

24

What happens during Suspend to RAM

• grabs mutex (only one suspend at once). Syncs disk.

Freezes userspace.

• suspends all devices. Down tree, want leaf suspended

first

• disables non-boot CPUs

• disable interrupts, disable last system devices

• Call system sleep state init

25

What happens during Wakeup

• Wakeup event comes in (WOL, button, lid switch, power

switch, etc.)

• CPU reinitialized (similar to bootup code)

• other CPUs reactivated

• devices resumed

• tasks unfrozen

26

• mutex released

• ISSUES: firmware re-load? where stored (problem if on

disk or USB disk, etc. must store in memory?)

• Graphics card coming back, as X in userspace until

recently. kernel mode setting helps

27

The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

28

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs, each get

20%). Per user? (5 users, each get 20%). Per-process?

29

Per-thread? Multi-processors? Hyper-threading? Het-

erogeneous cores? Thermal issues?

30

Power-Aware Scheduler

• Most of this from various LWN articles

• Linux scheduler is complicated

• maintainers don’t want regressions

• Can handle idle OK, maxed out OK. lightly loaded is a

problem

• 2.6.18 - 3.4 was sched mc power savings in sysctl but

not widely used, removed

31

• “packing-small-tasks” patchset – move small patchsets

to CPU0 so not wake up other sleeping CPUs

small defined as 20% of CPU time

• knowledge of shared power lines. treat CPUs that

must go idle together as a shared entity scheduling wise

(buddy)

• how does this affect performance (cache contention)

• Shi’s power-aware scheduling

• move tasks from lightly loaded CPUs to others with

32

capacity

• if out of idle CPUs, then ramp up and race-to-idle

• Heterogeneous systems (such as big.LITTLE)

• Rasmussen mixed-cpu-power-systems patchset maxed

out little CPU, move task to big CPU

• task tries to use the little CPUs first before ramping up

big

33

Wake Locks and Suspend Blockers

• See “Technical Background of the Android Suspend

Blockers Controversy” by Wysocki, 2010.

• Low-power systems want “opportunistic suspend”

• Google Android propose this interface, kernel developers

push back

• System spends much of time in sleep, with just enough

power to keep RAM going and power sources of events

34

• A Wake Lock prevents the kernel from entering low

power state

• WAKE LOCK SUSPEND – prevent suspending

WAKE LOCK IDLE – avoid idling which adds wakeup

latency

• Try to avoid race conditions during suspend and incoming

events. For example, system trying to suspend, incoming

call coming in, don’t let it lose events and suspend. Take

lock to keep it awake until call over.

• Kernel high-quality timing suspended, sync with low-

35

quality RTC, time drifts

• Kernel developers not like for various reasons. All drivers

have to add explicit support. User processes. What

happens when process holding lock dies.

• You have to trust the apps (gmail) to behave and not

waste battery, no way for kernel to override.

36

CPU Idle Framework?

• In kernel, kernel developers suggest it can be used instead

of wake locks. Gives more control to kernel, doesn’t trust

userspace.

• Tracks various low-power CPU “C-states”. Knows of

Power consumption vs exit latency tradeoffs

• Lower C-states take power to come back, and might do

things like flush the cache.

• kernel registers various C-state “governors” with info on

37

them.

The kernel uses the pm qos value to choose which to

enter.

• QOS say I need latencies better than 100us, so if suspend

takes longer can’t enter that suspend state

• /sys/devices/system/cpu/cpu0/cpuidle has power and

latency values, among other things

• CPU idle stats, turbostat

• ACPI issues. Doesn’t always accurately report C-states,

38

latencies

• ACPI IDLE driver

• Alternate INTEL IDLE as poorly written BIOSes not

idling well on intel

39

Tools

• There are various tools that can show you status of

power under Linux, configure settings, etc.

• Unfortunately you usually have to run these as root

40

Tools – Powertop

• Shows cstates, wakeups, suggested settings, gpu power

• On laptops with battery connected can estimate ener-

gy/power based on battery drain

41

Powertop–Overview

Summary: 344.6 wakeups/second, 0.0 GPU ops/seconds, 0.0 VFS ops/sec

Usage Events/s Category Description

25.1 ms/s 268.6 Process swirl -root

100.0% Device Audio codec hwC0D3: Intel

100.0% Device Audio codec hwC0D0: Cirru

259.1 M-BM-5s/s 29.6 kWork od_dbs_timer

11.1 M-BM-5s/s 17.8 Timer menu_hrtimer_notify

34.2 ms/s 2.0 Process /usr/bin/X :0 vt7 -nolist

1.2 ms/s 10.9 Timer hrtimer_wakeup

326.0 M-BM-5s/s 4.9 Timer tick_sched_timer

5.1 ms/s 1.0 Process powertop

33.3 M-BM-5s/s 2.0 Interrupt [3] net_rx(softirq)

484.3 M-BM-5s/s 1.0 Interrupt [7] sched(softirq)

75.4 M-BM-5s/s 1.0 Process sshd: vince@pts/1

46.6 M-BM-5s/s 1.0 Timer watchdog_timer_fn

42

Powertop – Idle Stats
Package | Core | CPU 0 CPU 2

| | C0 active 1.3% 0.4%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.4% 0.3 ms 0.0%

C2 (pc2) 1.1% | |

C3 (pc3) 0.0% | C3 (cc3) 0.4% | C3-IVB 0.4% 0.3 ms 0.0%

C6 (pc6) 1.5% | C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

C7 (pc7) 90.1% | C7 (cc7) 94.9% | C7-IVB 96.4% 7.4 ms 99.1%

| Core | CPU 1 CPU 3

| | C0 active 0.6% 1.1%

| | POLL 0.0% 0.0 ms 0.0%

| | C1-IVB 0.0% 0.1 ms 0.0%

| |

| C3 (cc3) 0.0% | C3-IVB 0.0% 0.3 ms 0.0%

| C6 (cc6) 0.0% | C6-IVB 0.0% 0.0 ms 0.0%

| C7 (cc7) 96.0% | C7-IVB 98.8% 26.2 ms 97.7%

43

Powertop – Frequency Stats

Package | Core | CPU 0 CPU 2

| | Actual 1202 MHz 1198 MHz

Turbo Mode 0.0% | Turbo Mode 0.0% | Turbo Mode 0.0% 0.0%

2.50 GHz 0.0% | 2.50 GHz 0.0% | 2.50 GHz 0.0% 0.0%

2.40 GHz 0.0% | 2.40 GHz 0.0% | 2.40 GHz 0.0% 0.0%

2.31 GHz 0.0% | 2.31 GHz 0.0% | 2.31 GHz 0.0% 0.0%

2.21 GHz 0.0% | 2.21 GHz 0.0% | 2.21 GHz 0.0% 0.0%

2.10 GHz 0.0% | 2.10 GHz 0.0% | 2.10 GHz 0.0% 0.0%

2.00 GHz 0.0% | 2.00 GHz 0.0% | 2.00 GHz 0.0% 0.0%

1.91 GHz 0.0% | 1.91 GHz 0.0% | 1.91 GHz 0.0% 0.0%

...

1500 MHz 0.0% | 1500 MHz 0.0% | 1500 MHz 0.0% 0.0%

1400 MHz 0.0% | 1400 MHz 0.0% | 1400 MHz 0.0% 0.0%

1300 MHz 0.0% | 1300 MHz 0.0% | 1300 MHz 0.0% 0.0%

1200 MHz 2.4% | 1200 MHz 2.4% | 1200 MHz 2.4% 0.0%

Idle 97.6% | Idle 97.6% | Idle 97.6% 100.0%

44

Powertop – Device Stats

Usage Device name

4.7% CPU use

100.0% Audio codec hwC0D3: Intel

100.0% Audio codec hwC0D0: Cirrus Logic

0.0 ops/s GPU

100.0% USB device: IR Receiver (Apple, Inc.)

100.0% USB device: BRCM20702 Hub (Apple Inc.)

100.0% USB device: usb-device-0424-2512

100.0% PCI Device: Broadcom Corporation BCM4331 802.11a/b/

100.0% PCI Device: Intel Corporation Xeon E3-1200 v2/3rd

100.0% PCI Device: Intel Corporation 3rd Gen Core processo

100.0% Radio device: btusb

100.0% USB device: Bluetooth USB Host Controller (Apple

100.0% USB device: USB Keyboard (USB)

100.0% USB device: Dell USB Mouse (Dell)

100.0% PCI Device: Broadcom Corporation NetXtreme BCM57765

45

Powertop – Tunables

>> Bad VM writeback timeout

Bad Enable SATA link power Management for host0

Bad Enable SATA link power Management for host1

Bad Enable SATA link power Management for host2

Bad Enable SATA link power Management for host3

Bad Enable SATA link power Management for host4

Bad Enable SATA link power Management for host5

Bad Enable Audio codec power management

Bad NMI watchdog should be turned off

Bad Autosuspend for USB device Bluetooth USB Host Controller

Bad Autosuspend for USB device USB Keyboard [USB]

Bad Autosuspend for USB device IR Receiver [Apple, Inc.]

Bad Autosuspend for USB device Dell USB Mouse [Dell]

Bad Runtime PM for PCI Device Intel Corporation 7 Series/C210 Se

Bad Runtime PM for PCI Device Intel Corporation Xeon E3-1200 v2/

Bad Runtime PM for PCI Device Intel Corporation 3rd Gen Core pro

46

Tools – Cpufreq

• cpufreq-info (no root) shows info of current governor

and frequency states, etc.

• cpufreq-set (needs root) – set governor or frequency

• cpurfreq-apert (needs root) – shows aperf/mperf set-

tings from MSR. Useful for determining frequency val-

ues?

47

cpufreq-info
analyzing CPU 3:

driver: acpi-cpufreq

CPUs which run at the same hardware frequency: 0 1 2 3

CPUs which need to have their frequency coordinated by software: 3

maximum transition latency: 10.0 us.

hardware limits: 1.20 GHz - 2.50 GHz

available frequency steps: 2.50 GHz, 2.50 GHz, 2.40 GHz, 2.30 GHz,

2.20 GHz, 2.10 GHz, 2.00 GHz, 1.90 GHz, 1.80 GHz, 1.70 GHz,

1.60 GHz, 1.50 GHz, 1.40 GHz, 1.30 GHz, 1.20 GHz

available cpufreq governors: conservative, powersave, userspace,

ondemand, performance

current policy: frequency should be within 1.20 GHz and 2.50 GHz.

The governor ‘‘ondemand’’ may decide which speed to use

within this range.

current CPU frequency is 1.20 GHz.

cpufreq stats: 2.50 GHz:0.99%, 2.50 GHz:0.00%, 2.40 GHz:0.00%,

1.70 GHz:0.00%, 1.60 GHz:0.03%, 1.50 GHz:0.00%,

1.40 GHz:0.01%, 1.30 GHz:0.01%, 1.20 GHz:98.95% (54321)

48

Powertop – aperf/mperf

• mperf is a counter that counts at the maximum frequency

the CPU supports

• aperf counts at the current running frequency

• current frequency (for things like detecting TurboBoost)

can be detected by the ratio

49

Tools – x86 energy perf policy

• allows adjusting the msr that tells how aggressive turbo

mode is, among other things. hint at a performance vs

power preference

• comes in Linux source tree in tools/pow-

er/x86/x86 energy perf policy

50

Tools – Turbostat

• shows cstates, RAPL information, turboboost, other

things from MSRs

• comes in Linux source tree in tools/power/x86/turbostat

51

Turbostat Output

./turbostat -S

%c0 GHz TSC SMI %c1 %c3 %c6 %c7 CTMP PTMP %pc2 %pc3 %pc6 %pc7 Pkg_W Cor_W GFX_W

1.34 1.99 2.29 0 2.72 0.05 0.01 95.88 44 45 2.84 0.02 2.96 86.14 2.31 0.43 0.00

1.24 2.23 2.29 0 1.94 0.13 0.00 96.69 45 46 2.88 0.15 2.97 87.63 2.30 0.43 0.00

1.56 1.77 2.29 0 2.98 0.11 0.00 95.35 43 47 2.63 0.12 2.73 85.67 2.32 0.43 0.00

1.42 1.84 2.29 0 2.51 0.05 0.00 96.03 45 45 2.66 0.03 2.74 86.88 2.30 0.41 0.00

...

%pc6 %pc7 Pkg_W Cor_W GFX_W

2.96 86.14 2.31 0.43 0.00

2.97 87.63 2.30 0.43 0.00

2.73 85.67 2.32 0.43 0.00

2.74 86.88 2.30 0.41 0.00

52

Tools – Sensors

• no need for root if configured right

• shows temps, fans, etc

• Various other sensors from i2c bus, etc.

53

Sensors Part 1
vince@mac-mini:~$ sensors

applesmc-isa-0300

Adapter: ISA adapter

Exhaust : 1798 RPM (min = 1800 RPM, max = 5500 RPM)

TA0P: +37.0oC

TA0p: +37.0oC

TA1P: +37.8oC

TA1p: +37.8oC

TC0C: +42.0oC

TC0D: +44.8oC

TC0E: +42.8oC

TC0F: +43.2oC

TC0G: +99.0oC

TC0J: +0.2oC

TC0P: +40.8oC

TC0c: +42.0oC

TC0d: +44.8oC

54

Sensors Part 2
TC0p: +40.8oC

TC1C: +42.0oC

TC1c: +42.0oC

TCGC: +42.0oC

TCGc: +42.0oC

TCPG: +103.0oC

TCSC: +43.0oC

TCSc: +43.0oC

TCTD: -0.2oC

TCXC: +42.8oC

TCXc: +42.8oC

coretemp-isa-0000

Adapter: ISA adapter

Physical id 0: +46.0oC (high = +87.0oC, crit = +105.0oC)

Core 0: +42.0oC (high = +87.0oC, crit = +105.0oC)

Core 1: +45.0oC (high = +87.0oC, crit = +105.0oC)

55

When can we scale CPU down?

• System idle

• System memory or I/O bound

• Poor multi-threaded code (spinning in spin locks)

• Thermal emergency

• User preference (want fans to run less)

56

