ECE 571 – Advanced Microprocessor-Based Design Lecture 29

Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu

13 November 2020

Announcements

- HW10 will be assigned, another reading
- Project Topics
- RAPL info leak in the news

Recent Intel Errata

- *Mitigations for Jump Conditional Code Erratum*, Version 1, Intel, November 2019
- Sandybridge and newer
- CPU has a micro-op cache (separate than instruction cache)
- If jump-related uop straddles a 32B or 64B boundary (due to cache lines) unexpected things can happen (what?)
- This includes returns, fused opcodes, etc

- HW Fix: microcode update, prevents lines with code like this being cached, can hurt performance
- SW Fix: modify the assembler to not generate jumps in those locations. Hurts everyone even AMD?

The AMD Zen 3 Microarchitecture

AMD Zen 3 Ryzen Deep Dive Review: 5950X, 5900X, 5800X and 5600X Tested

• By Ian Cutress and AndreiFrumusanu

Page 1 – Background

- Zen3 doing better than Intel
- Use same motherboard
- Six to 16 cores
- DDR4-3200
- 20 lanes PCle4
- Ryzen 9 5950X 16 cores / 32 threads 3.4GHz, Turbo up to 5GHz
- 64MB L3 cache
- Up to 142W

• Chiplets

- \circ Each chiplet with 8 cores
- 7nm (TSMC, Global foundries drop out)
- 8-core base, with all access to L3 (Zen2 was 4-core base)
- Chip made of chiplets connected via IO die
 Connected via Infinity Fabric
 - I/O die at 14nm (Glofo) EPYC (more complex) 12nm (Glofo) consumer
 - Consumer with up to 16 cores have 24 PCIe 4.0 lanes (intel stuck at 3.0)

- EPYC with 64 cores, 8 memory channels, 128 PCIe
 4.0 lanes
- Zen3 not incremental, new design
- Branch predictor in Zen2 was actually for Zen3
- \bullet 19% better IPC vs Zen2

Page 2 – IPC Increase

- SMT
- i-cache 32k, 8-way
- op-cache 4k
- d-cache 32k, 8-way
- L2 512k 8-way
- decode 4ins/cycle or 8ins/cycle frop opcache
- dispatch 6ins/cycle to fp/int
- 3 memory ops/cycle (2 can be stores)
- L1 64entry TLB I and D, all sizes

- L2 512 I, 2k D, all but 1G
- two 256 bit multi/accumulate per cycle
- Changes since Zen2
 - ∘ 2k larger L1 BTB (bdpred)
 - \circ improved branch predictor
 - \circ no-bubble branch prediction
 - \circ faster recovery from mispredict
 - \circ higher load/store bandwidth
 - \circ faster FMAC

Page 3 – Front End Update

- TAGE branch predictor
 - \circ long histories, tagged to avoid aliasing
 - Seznec and Michoud, 2006, JILP A Case for Partially
 TAgged GEometric history length branch prediction
 - Hybrid branch predictor
 - \circ Tag a branch scenario, not just by address
 - Finer grained granularity, can have different sized history, possibly multiple for each address
- redistributed BTB

- larger ITA (indirect target array)
- lower mispredict latency
- optimized I1 icache improved prefetching, pull from L2 into L1
- maximum IPC is 6
- 192 physical registers (how many arch registers?)2
- 10 issue per cycle (4 ALU, 3AGU, 1 dedicated branch, 2 st data)
- OOOwindow 256 entries. small compared to Intel
- FMAC 4 cycles rather than 5

Page 4 – Load / Store

- +4 TLB walkers? for a total of 6, meaning walk the page tables
- \bullet L2 TLB only covers 1/4 of L3 cache
- 3 loads/2 stores a cycle
- improved REP MOVS performance
- 32MB L3 cache, latency +7 now 46 cycles
- private L2 cache, L3 filled with L2 victims (mostly exclusive)
- L2 latency of 12-cycles

• 64 / 192 outstanding misses

Page 5 – Cache Performance

- L1D 4-cycles
- prefetcher less aggressive in some ways
- mysteriously new cache replacement policy
- Frequency Ramping
 - \circ faster transfer from sleep to wakeup

Page 6 – new improved instructions

- improved FMA, 4 cylces, same as Intel
- VPCLMULQDQ carryless multiply of one quadword (64-bit) subset of vector (256 bit) register by another, configurable which gets multiplied by what
- various speed changes
- x87 still supported

Page 7 – Frequency

• 5GHz though not hyped

Page 8 – TDP/Power Draw

• complicated

Page 9 – Benchmarks

- SPEC 2006/2017
- lots of games

Tickless idle / NOHz

- Gets rid of the periodic timer tick (wakeups use Energy)
- Linux typically has periodic timer interrupt at 100, 250, or 1000Hz. Used to implement various timers, accounting, and context switch. Waste of energy if system is idle! (also, what if large IBM system with hundreds of VMs all doing nothing but ticking?)
- Use timers, only schedule a wakeup if needed
- Want to limit wakeups, as they bring CPU out of sleep

mode or idle

- Group close-enough timers together. deferrable timers
- Depends on userspace staying quiet if possible.
 Userspace does foolish stuff, like poll for file changes or drive status, blinking cursor, etc.
- Semi-related "NOHz tasks": Turn off all interrupts, turn CPU into compute core for HPC

Suspend

- Linux supports three states:
 - 1. Standby minimal latency, higher energy
 - Suspend to RAM similar to standby, lower energy. Everything except RAM refresh and wakeup events turned off
 - 3. Suspend to Disk even lower energy, high latency

Suspend to RAM

- Platform driver provides suspend-to-ram interface
- Often a controller supports fans, batteries, button presses, wakeup events, etc.
- ACPI interpreter runs in kernel, reads table or AML, essentially takes program from BIOS and runs in kernel interpreter
- PCI has D states, D0 (awake) to D3 (asleep). D1 and D2 are in between and optional and not used

 User can start suspend to RAM via ioctl or writing "mem" to /sys/power/state

What happens during Suspend to RAM

- grabs mutex (only one suspend at once). Syncs disk. Freezes userspace.
- suspends all devices. Down tree, want leaf suspended first
- disables non-boot CPUs
- disable interrupts, disable last system devices
- Call system sleep state init

What happens during Wakeup

- Wakeup event comes in (WOL, button, lid switch, power switch, etc.)
- CPU reinitialized (similar to bootup code)
- other CPUs reactivated
- devices resumed
- tasks unfrozen

- mutex released
- ISSUES: firmware re-load? where stored (problem if on disk or USB disk, etc. must store in memory?)
- Graphics card coming back, as X in userspace until recently. kernel mode setting helps

The Linux Scheduler

- People often propose modifying the scheduler. That is tricky.
- Scheduler picks which jobs to run when.
- Optimal scheduler hard. What makes sense for a longrunning HPC job doesn't necessarily make sense for an interactive GUI session. Also things like I/O (disk) get involved.
- You don't want it to have high latency

- Linux originally had a simple circular scheduler. Then for 2.4 through 2.6 had an O(N) scheduler
- Then in 2.6 until 2.6.23 had an O(1) scheduler (constant time, no many how many processes).
- Currently the "Completely Fair Scheduler" (with lots of drama). Is O(log N). Implementation of "weighted fair queuing"
- How do you schedule? Power? Per-task (5 jobs, each get 20%). Per user? (5 users, each get 20%). Per-process?

Per-thread? Multi-processors? Hyper-threading? Heterogeneous cores? Thermal issues?

Power-Aware Scheduler

- Most of this from various LWN articles
- Linux scheduler is complicated
- maintainers don't want regressions
- Can handle idle OK, maxed out OK. lightly loaded is a problem
- 2.6.18 3.4 was sched_mc_power_savings in sysctl but not widely used, removed

- "packing-small-tasks" patchset move small patchsets to CPU0 so not wake up other sleeping CPUs small defined as 20% of CPU time
- knowledge of shared power lines. treat CPUs that must go idle together as a shared entity scheduling wise (buddy)
- how does this affect performance (cache contention)
- Shi's power-aware scheduling
- move tasks from lightly loaded CPUs to others with

capacity

- if out of idle CPUs, then ramp up and race-to-idle
- Heterogeneous systems (such as big.LITTLE)
- Rasmussen mixed-cpu-power-systems patchset maxed out little CPU, move task to big CPU
- task tries to use the little CPUs first before ramping up big

Wake Locks and Suspend Blockers

- See "Technical Background of the Android Suspend Blockers Controversy" by Wysocki, 2010.
- Low-power systems want "opportunistic suspend"
- Google Android propose this interface, kernel developers push back
- System spends much of time in sleep, with just enough power to keep RAM going and power sources of events

- A Wake Lock prevents the kernel from entering low power state
- WAKE_LOCK_SUSPEND prevent suspending
 WAKE_LOCK_IDLE avoid idling which adds wakeup
 latency
- Try to avoid race conditions during suspend and incoming events. For example, system trying to suspend, incoming call coming in, don't let it lose events and suspend. Take lock to keep it awake until call over.
- Kernel high-quality timing suspended, sync with low-

quality RTC, time drifts

- Kernel developers not like for various reasons. All drivers have to add explicit support. User processes. What happens when process holding lock dies.
- You have to trust the apps (gmail) to behave and not waste battery, no way for kernel to override.

CPU Idle Framework?

- In kernel, kernel developers suggest it can be used instead of wake locks. Gives more control to kernel, doesn't trust userspace.
- Tracks various low-power CPU "C-states". Knows of Power consumption vs exit latency tradeoffs
- Lower C-states take power to come back, and might do things like flush the cache.
- kernel registers various C-state "governors" with info on

them.

The kernel uses the pm_qos value to choose which to enter.

- QOS say I need latencies better than 100us, so if suspend takes longer can't enter that suspend state
- /sys/devices/system/cpu/cpu0/cpuidle has power and latency values, among other things
- CPU idle stats, turbostat
- ACPI issues. Doesn't always accurately report C-states,

latencies

- ACPI_IDLE driver
- Alternate INTEL_IDLE as poorly written BIOSes not idling well on intel

Tools

- There are various tools that can show you status of power under Linux, configure settings, etc.
- Unfortunately you usually have to run these as root

Tools – Powertop

- Shows cstates, wakeups, suggested settings, gpu power
- On laptops with battery connected can estimate energy/power based on battery drain

Powertop–Overview

Summary: 344.6 wakeups/second, 0.0 GPU ops/seconds, 0.0 VFS ops/sec

Usage	Events/s	Category	Description
25.1 ms/s	268.6	Process	swirl -root
100.0%		Device	Audio codec hwCOD3: Intel
100.0%		Device	Audio codec hwCODO: Cirru
259.1 M-BM-5s/s	29.6	kWork	od_dbs_timer
11.1 M-BM-5s/s	17.8	Timer	menu_hrtimer_notify
34.2 ms/s	2.0	Process	/usr/bin/X :0 vt7 -nolist
1.2 ms/s	10.9	Timer	hrtimer_wakeup
326.0 M-BM-5s/s	4.9	Timer	tick_sched_timer
5.1 ms/s	1.0	Process	powertop
33.3 M-BM-5s/s	2.0	Interrupt	<pre>[3] net_rx(softirq)</pre>
484.3 M-BM-5s/s	1.0	Interrupt	<pre>[7] sched(softirq)</pre>
75.4 M-BM-5s/s	1.0	Process	<pre>sshd: vince@pts/1</pre>
46.6 M-BM-5s/s	1.0	Timer	watchdog_timer_fn

Powertop – Idle Stats

	Package		Core	 CO active POLL C1-IVB	CPU 0 1.3% 0.0% 0.4%	CPU 2 0.4% 0.0 ms 0. 0.3 ms 0.
C2 (pc2) C3 (pc3) C6 (pc6) C7 (pc7)	1.1% 0.0% 1.5% 90.1%	 C3 (cc3) C6 (cc6) C7 (cc7)	0.4% 0.0% 94.9%	 C3-IVB C6-IVB C7-IVB	0.4% 0.0% 96.4%	0.3 ms 0. 0.0 ms 0. 7.4 ms 99.
			Core	 CO active POLL C1-IVB 	CPU 1 0.6% 0.0% 0.0%	CPU 3 1.1% 0.0 ms 0. 0.1 ms 0.
		C3 (cc3) C6 (cc6) C7 (cc7)	0.0% 0.0% 96.0%	C3-IVB C6-IVB C7-IVB	0.0% 0.0% 98.8%	0.3 ms 0. 0.0 ms 0. 26.2 ms 97.

Powertop – Frequency Stats

	Package	.	Core	l	CPU 0	CPU 2
				Actual	1202 MHz	1198 M
Turbo Mode	0.0%	Turbo Mode	0.0%	Turbo Mode	0.0%	0.0%
2.50 GHz	0.0%	2.50 GHz	0.0%	2.50 GHz	0.0%	0.0%
2.40 GHz	0.0%	2.40 GHz	0.0%	2.40 GHz	0.0%	0.0%
2.31 GHz	0.0%	2.31 GHz	0.0%	2.31 GHz	0.0%	0.0%
2.21 GHz	0.0%	2.21 GHz	0.0%	2.21 GHz	0.0%	0.0%
2.10 GHz	0.0%	2.10 GHz	0.0%	2.10 GHz	0.0%	0.0%
2.00 GHz	0.0%	2.00 GHz	0.0%	2.00 GHz	0.0%	0.0%
1.91 GHz	0.0%	1.91 GHz	0.0%	1.91 GHz	0.0%	0.0%
• • •						
1500 MHz	0.0%	1500 MHz	0.0%	1500 MHz	0.0%	0.0%
1400 MHz	0.0%	1400 MHz	0.0%	1400 MHz	0.0%	0.0%
1300 MHz	0.0%	1300 MHz	0.0%	1300 MHz	0.0%	0.0%
1200 MHz	2.4%	1200 MHz	2.4%	1200 MHz	2.4%	0.0%
Idle	97.6%	Idle	97.6%	Idle	97.6%	100.0%

Powertop – Device Stats

0	Device name
4./%	CPU use
100.0%	Audio codec hwCOD3: Intel
100.0%	Audio codec hwCODO: Cirrus Logic
0.0 ops/s	GPU
100.0%	USB device: IR Receiver (Apple, Inc.)
100.0%	USB device: BRCM20702 Hub (Apple Inc.)
100.0%	USB device: usb-device-0424-2512
100.0%	PCI Device: Broadcom Corporation BCM4331 802.11a
100.0%	PCI Device: Intel Corporation Xeon E3-1200 v2/3r
100.0%	PCI Device: Intel Corporation 3rd Gen Core proce
100.0%	Radio device: btusb
100.0%	USB device: Bluetooth USB Host Controller (Apple
100.0%	USB device: USB Keyboard (USB)
100.0%	USB device: Dell USB Mouse (Dell)
100.0%	PCI Device: Broadcom Corporation NetXtreme BCM57

Powertop – Tunables

>> Bad	VM writeback timeout
Bad	Enable SATA link power Management for hostO
Bad	Enable SATA link power Management for host1
Bad	Enable SATA link power Management for host2
Bad	Enable SATA link power Management for host3
Bad	Enable SATA link power Management for host4
Bad	Enable SATA link power Management for host5
Bad	Enable Audio codec power management
Bad	NMI watchdog should be turned off
Bad	Autosuspend for USB device Bluetooth USB Host Controller
Bad	Autosuspend for USB device USB Keyboard [USB]
Bad	Autosuspend for USB device IR Receiver [Apple, Inc.]
Bad	Autosuspend for USB device Dell USB Mouse [Dell]
Bad	Runtime PM for PCI Device Intel Corporation 7 Series/C210
Bad	Runtime PM for PCI Device Intel Corporation Xeon E3-1200
Bad	Runtime PM for PCI Device Intel Corporation 3rd Gen Core

Tools – Cpufreq

- cpufreq-info (no root) shows info of current governor and frequency states, etc.
- cpufreq-set (needs root) set governor or frequency
- cpurfreq-apert (needs root) shows aperf/mperf settings from MSR. Useful for determining frequency values?

cpufreg-info

analyzing CPU 3: driver: acpi-cpufreq CPUs which run at the same hardware frequency: 0 1 2 3 CPUs which need to have their frequency coordinated by software: 3 maximum transition latency: 10.0 us. hardware limits: 1.20 GHz - 2.50 GHz available frequency steps: 2.50 GHz, 2.50 GHz, 2.40 GHz, 2.30 GHz, 2.20 GHz, 2.10 GHz, 2.00 GHz, 1.90 GHz, 1.80 GHz, 1.70 GHz, 1.60 GHz, 1.50 GHz, 1.40 GHz, 1.30 GHz, 1.20 GHz available cpufreq governors: conservative, powersave, userspace, ondemand, performance current policy: frequency should be within 1.20 GHz and 2.50 GHz. The governor 'ondemand' may decide which speed to use within this range. current CPU frequency is 1.20 GHz. cpufreq stats: 2.50 GHz:0.99%, 2.50 GHz:0.00%, 2.40 GHz:0.00%, 1.70 GHz:0.00%, 1.60 GHz:0.03%, 1.50 GHz:0.00%, 1.40 GHz:0.01%, 1.30 GHz:0.01%, 1.20 GHz:98.95% (54321)

Powertop – aperf/mperf

- mperf is a counter that counts at the maximum frequency the CPU supports
- aperf counts at the current running frequency
- current frequency (for things like detecting TurboBoost) can be detected by the ratio

Tools – x86_energy_perf_policy

- allows adjusting the msr that tells how aggressive turbo mode is, among other things. hint at a performance vs power preference
- comes in Linux source tree in tools/power/x86/x86_energy_perf_policy

Tools – Turbostat

- shows cstates, RAPL information, turboboost, other things from MSRs
- comes in Linux source tree in tools/power/x86/turbostat

Turbostat Output

./turbosta	at -S									
%c0 GHz	z TSC	SMI	%c1	%c3	%c6	%c7	CTMP	PTMP	%pc2	%рсЗ
1.34 1.99	9 2.29	0	2.72	0.05	0.01	95.88	44	45	2.84	0.02
1.24 2.23	3 2.29	0	1.94	0.13	0.00	96.69	45	46	2.88	0.15
1.56 1.77	7 2.29	0	2.98	0.11	0.00	95.35	43	47	2.63	0.12
1.42 1.84	1 2.29	0	2.51	0.05	0.00	96.03	45	45	2.66	0.03

•••				
%pc6	%pc7	Pkg_W	Cor_W	GFX_W
2.96	86.14	2.31	0.43	0.00
2.97	87.63	2.30	0.43	0.00
2.73	85.67	2.32	0.43	0.00
2.74	86.88	2.30	0.41	0.00

Tools – Sensors

- no need for root if configured right
- shows temps, fans, etc
- Various other sensors from i2c bus, etc.

Sensors Part 1

vince@mac-mini:~\$ sensors								
applesmc-isa-(0300							
Adapter: ISA a	adapter							
Exhaust : 1	1798 RPM	(min =	1800	RPM,	max	= 5500	RPM)	
TAOP:	+37.0°C							
TAOp:	+37.0°C							
TA1P:	+37.8°C							
TA1p:	+37.8°C							
TCOC:	+42.0°C							
TCOD:	+44.8°C							
TCOE:	+42.8°C							
TCOF:	+43.2°C							
TCOG:	+99.0°C							
TCOJ:	+0.2°C							
TCOP:	+40.8°C							
TCOc:	+42.0°C							
TCOd:	$+44.8^{\circ}C$							

Sensors Part 2

TCOp: +	-40.8°C	
TC1C: +	-42.0°C	
TC1c: +	-42.0°C	
TCGC: +	-42.0°C	
TCGc: +	-42.0°C	
TCPG: +1	103.0^{o} C	
TCSC: +	-43.0°C	
TCSc: +	-43.0°C	
TCTD:	-0.2°C	
TCXC: +	-42.8°C	
TCXc: +	-42.8°C	
coretemp-isa-00	000	
Adapter: ISA ad	lapter	
Physical id O:	+46.0°C	$(high = +87.0^{\circ}C, crit = +105.0^{\circ}C)$
Core O:	+42.0°C	$(high = +87.0^{\circ}C, crit = +105.0^{\circ}C)$
Core 1:	+45.0°C	$(high = +87.0^{\circ}C, crit = +105.0^{\circ}C)$

When can we scale CPU down?

- System idle
- \bullet System memory or I/O bound
- Poor multi-threaded code (spinning in spin locks)
- Thermal emergency
- User preference (want fans to run less)

