
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 35

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 December 2020

http://web.eece.maine.edu/~vweaver


Project/HW Reminder

• Don’t forget Homework #11

1



3D Graphics Rundown

• Rasterization (traditional 3d cards)

◦ Send vertices to card

◦ Triangles, normals

◦ Project to 2d screen

◦ Broken up to pixels and shaded/textured

◦ Clipping, depth

• Ray-tracing

◦ Light is traced to eye (or the reverse)

• Ray-casting

2



Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

3



Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

4



read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

5



GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

6



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

7



Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color

8

shadertoy.com


◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows

9



GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y

10



Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

11



◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)

12



Example Shader 3.0 (DX9) capatbilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

13



Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

14



– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

15



Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

16



Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

17



Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

18



CUDA Programming

• Since 2007

• Use nvcc to compile

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

• global parameters to function – means pass to

CUDA compiler

19



• cudaMalloc() to allocate memory and pointers that can

be passed in

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• cudaFree() at the end

• Can get block number with blockIdx.x and thread index

with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

• Why threads vs blocks?

20



Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

21



More CUDA Programming

• See the NVIDIA “CUDA C Programming Guide”

• Compute Unified Device Architecture

• From CUDA C Programming guide from NVIDIA

• CUDA introduced in 2006

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

22



• CUDA C extends C, define C functions ”kernels” that

are executed N times in parallel by N CUDA threads

23



CUDA Coding

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

24



code that can launch the GPU code

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Only subset of C/C++ supported in the device code

25



CUDA Hardware

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads that execute

independently from each other.

• Manages/Schedules/Executes threads in groups of 32

parallel threads (warps) (weaving terminology) (no

relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

26



each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

27



CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly

g l o b a l v o i d VecAdd ( f l o a t *A, f l o a t *B, f l o a t *C) {
i n t i = t h r e a d I d x . x ;

C [ i ]=A [ i ]+B [ i ] ;

}

28



i n t main ( i n t argc , c h a r ** a r g v ) {
. . . .

/* I n v o k e N t h r e a d s */

VecAdd<<<1,N>>>(A, B, C ) ;

}

• threadIdx is 3-component vector, can be seen as 1, 2 or

3 dimensional block of threads (thread block)

• Much like our sobel code, can look as 1D (just x), 2D,

(thread iD is ((y*xsize)+x) or (z*xsize*ysize)+y*xsize+x

• Weird syntax for doing 2 or 3d.

29



g l o b a l v o i d MatAdd ( f l o a t A [N ] [ N] , f l o a t B [N ] [ N] , f l o a t C [N ] [ N ] )

{
i n t i=t h r e a d I d x . x ;

i n t j=t h r e a d I d x . y ;

C [ i ] [ j ]=A [ i ] [ j ]+B [ i ] [ j ] ;

}

i n t numBlocks =1;

dim3 t h r e a d s P e r B l o c k (N,N ) ;

MatAdd<<<numBlocks , t h r e a d s P e r B l o c k >>>(A, B, C ) ;

30



• Each block made up of the threads. Can have multiple

levels of blocks too, can get block number with blockIdx

• Thread blocks operate independently, in any order. That

way can be scheduled across arbitrary number of cores

(depends how fancy your GPU is)

31



CUDA Memory

• Per-thread private local memory

• Shared memory visible to whole block (lifetime of block)

• Global memory

• also constant and texture spaces. Have special rules.

Texture can do some filtering and stuff

• Global, constant, and texture persistent across kernel

launches by same app.

32



More Coding

• No explicit initialization, done automatically first time

you do something (keep in mind if timing)

• Global Memory: linear or arrays.

◦ Arrays are textures

◦ Linear arrays are allocated with cudaMalloc(),

cudaFree()

◦ To transfer use cudaMemcpy()

◦ Also can be allocated cudaMallocPitch() cudaMalloc3D()

for allignment reasons

33



◦ Access by symbol (?)

• Shared memory, shared . Faster than Global also

device

Manually break your problem into smaller sizes

34



Misc

• Can lock host memory with cudaHostAlloc(). Pinned,

can’t be paged out. Can load store while kernel running

if case. Only so much available. Can be marked

writecombining. Not cached. So slow for host to read

(should only write) but speeds up PCI transaction.

35



Async Concurrent Execution

• Instead of serial/parallel/serial/parallel model

• Want to have CUDA running and host at same time, or

with mem transfers at same time

◦ Concurrent host/device: calls are async and return to

host before device done

◦ Concurrent kernel execution: newer devices can run

multiple kernels at once. Problem if use lots of memory

◦ Overlap of Data Transfer and Kernel execution

◦ Streams: sequence of commands that execute in order,

36



but can be interleaved with other streams

complicated way to set them up. Synchronization and

callbacks

37



Events

• Can create performance events to monitor timing

• PAPI can read out performance counters on some boards

• Often it’s for a full synchronous stream, can’t get values

mid-operation

• NVML can measure power and temp on some boards?

38



Multi-device system

• Can switch between active device

• More advanced systems can access each others device

memory

39



Other features

• Unified virtual address space (64 bit machines)

• Interprocess communication

• Error checking

40



Texture Memory

• Complex

41



3D Interop

• Can make results go to an OpenGL or Direct3D buffer

• Can then use CUDA results in your graphics program

42



Code Example

#i n c l u d e <s t d i o . h>

#d e f i n e N 10

g l o b a l v o i d add ( i n t *a , i n t *b , i n t * c ) {
i n t t i d=b l o c k I d x . x ;

i f ( t i d<N) {
c [ t i d ]=a [ t i d ]+b [ t i d ] ;

43



}
}

i n t main ( i n t arc , c h a r ** a r g v ) {

i n t a [N] , b [N] , c [N ] ;

i n t * dev a , * dev b , * d e v c ;

i n t i ;

/* A l l o c a t e memory on GPU */

44



cudaMal loc ( ( v o i d **)& dev a ,N* s i z e o f ( i n t ) ) ;

cudaMal loc ( ( v o i d **)& dev b ,N* s i z e o f ( i n t ) ) ;

cudaMal loc ( ( v o i d **)& dev c ,N* s i z e o f ( i n t ) ) ;

/* F i l l the h o s t a r r a y s w i t h v a l u e s */

f o r ( i =0; i<N; i ++) {
a [ i ]== i ;

b [ i ]= i * i ;

}

cudaMemcpy ( dev a , a ,N* s i z e o f ( i n t ) , cudaMemcpyHostToDevice ) ;

45



cudaMemcpy ( dev b , b ,N* s i z e o f ( i n t ) , cudaMemcpyHostToDevice ) ;

add<<<N,1>>>(dev a , dev b , d e v c ) ;

cudaMemcpy ( c , dev c ,N* s i z e o f ( i n t ) , cudaMemcpyDeviceToHost ) ;

/* r e s u l t s */

f o r ( i =0; i<N; i ++) {
p r i n t f (”%d+%d=%d\n ” , a [ i ] , b [ i ] , c [ i ] ) ;

}

46



cudaFree ( d e v a ) ;

cudaFree ( dev b ) ;

cudaFree ( d e v c ) ;

r e t u r n 0 ;

}

47


