
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 October 2022

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted

• Project will be coming up

1



Forgot to Mention last Time

• Prefetcher can’t cause faults (what if predicted load

NULL)

• Prefetcher shouldn’t prefetch MMIO (what if it does?)

• One solution is to not fetch beyond current page (we’ll

see more on what that means this lecture)

2



Virtual Memory

3



Physical Memory Downsides

• Never enough memory

• No memory protection between programs

• Memory fragmentation

• Programs need to be PIC (position independent code)

• Programs need to be totally loaded into memory before

execution, stack fixed size

4



Virtual Memory Upsides

• Give the illusion of more memory than available, with

disk as backing store.

• Memory protection

• Give illusion of contiguous memory to avoid

fragmentation

• Demand paging (no swapping out whole processes), only

load parts of programs as needed

• Give each process own linear view of memory.

5



Virtual Memory Downsides

• Complicated hardware/software

• Potentially slower, lots of indirection on every memory

access

• If run out of physical memory can end up swap storm,

machine unusable

6



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

7



Memory Management Unit

• In very old days was a separate (optional!) chip

• Can you run OS without an MMU?

◦ uclinux

◦ How do you keep processes separate? Very carefully...

8



Page Lookup

Simplest would just be a table, with virtual page as index

and physical page as value.

9



Page Tables – Hold Virt/Phys Mappings

• Collection of Page Table Entries (PTE)

• Some common components:

• ID of owner

• Virtual Page Number

• valid bit,

• location of page (memory, disk, etc)

• protection info (read only, etc)

• page is dirty, age (how recent updated, for LRU)

10



Page Table Issues – Size

• With 4GB memory and 4kb pages, you have 1 Million

pages per process.

• With 4-byte PTE then 4MB of page tables per-process.

Too big.

11



Hierarchical Page Tables

• It is likely each process does not use all 4GB at once.

(sparse)

• Put page tables in swappable virtual memory themselves!

• 4MB page table is 1024 pages which can be mapped in

1 4KB page.

12



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

13



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

14



64-bit Systems

• Virtual address space much bigger, how to handle?

• Physical memory usually not 64-bit yet, often from 40-48

bits

• Can we just add more levels of page tables?

◦ 64-bit x86 has 4-level page tables (256TBv/64TBp)

44/40-bits?

◦ Push by Intel for 5-level tables (128PBv/4PBp)

57 bits?

15



Another approach (Historical) – Inverted
Page Table

• IBM Power, Ultrasparc, ia64

• 4/5 level tables can be slow

• Have one single mapping, page mapping for each physical

to virtual page

• Almost like having a large software TLB

• Note: Linus Torvalds wasn’t a fan

16



• A linear search to find a mapping is slow, so can use

hash to find page. Better best case performance, can

perform poorly if hash algorithm has lots of aliasing.

• Also has poor cache performance due to hash

17



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

18



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

◦ Generally have a register pointing to the main page

table (CR3 on x86?)

• Early RISC machines would do it in Software

◦ Can be slow

◦ Has complications: what if the page-walking code was

swapped out?

19



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

20



Page Table Caches

• Why walk the whole page table if likely you’ve walked

similar before

• Many processors have page table caches

• Translation Caching: Skip, Don’t Walk (the Page Table)

(ISCA’10)

21



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (intel only added ASID support

recently)

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux (security issue with Meltdown bug!)

22



What happens on a memory access

• Cache hit, generally not a problem, see later. To be in

cache had to have gone through the whole VM process.

Although some architectures do a lookup anyway in case

permissions have changed.

• Cache miss, then send access out to memory

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

23



(by the hardware on x86)

• It no physical mapping in page table, then page fault

happens

24



What happens on a page fault

• The OS process structure has info on what memory

regions are valid and what should be there (text/data

comes from executable on disk, bss zeroed pages,

heap/stack might be auto-allocated zeroed pages)

• “minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• “major” – page needs to be created or brought in from

disk.

25



◦ Demand paging.

◦ Needs to find room in physical memory.

◦ If no free space available, needs to kick something out.

Disk-backed (and not dirty) just discarded.

Disk-backed and dirty, written back.

◦ Memory can be paged to disk. Eventually can OOM.

◦ Memory is then loaded, or zeroed, and PTE updated.

◦ Can it be shared? (zero page)

• “invalid” – segfault

26


