
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 1

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 September 2024

https://web.eece.maine.edu/~vweaver

Welcome to ECE571!

We’re going to learn all about modern Microprocessors!

https://web.eece.maine.edu/~vweaver/classes/ece571_2024f/

1

https://web.eece.maine.edu/~vweaver/classes/ece571_2024f/

Syllabus – Instructor Info

• I’m Professor Weaver

• Go over syllabus

• QR-Code: Should you trust it?

• Office is 203 Barrows

• Tentative Office hours 11am-noon Tues/Thurs.

Feel free to stop by if door open

• Lecture notes will be posted to website usually within a

day or so

2

Pre-reqs / Requirements

• ECE471 or permission

◦ Linux knowledge helps

◦ ECE473 comp arch helps

◦ I’ll review a lot of this as we go

• Optional Textbook – when we review computer

architecture, Patterson and Hennesey optional readings

are posted. Can “check out” for free from Umaine

Library webpage.

3

Syllabus – Grading

• 11 homeworks (5% each), one dropped

◦ You will be given accounts on Linux machines. Please

use them responsibly.

◦ Generally due Friday be beginning of class. Will have

week to do them.

◦ Submit via e-mail

◦ Will send out e-mail when posted to website

◦ Will reply with grades

• class participation (5%)

4

• 1 midterm exam (20% of total)

Tentatively October 30th

• 1 final project (25% of total)

last week of classes

work in groups

More details as get closer

• No final exam

5

Syllabus – Late Work / Regrade

• Late work penalty. I will consider late work, but best to

turn in what you have at time.

• Make regrade requests via e-mail.

6

Covid/Mask Policy

• Follow UMaine Guidance

• I feel this year is more dangerous than previous years

• If you test positive for Covid please don’t come to class

and let me know and we can make sure you get the work

done

• If you are sick for any reason but still coming to class I

encourage you to wear a mask

7

Syllabus – Academic Honesty

• Less of an issue than with other classes as we won’t be

coding much

• Do not copy answers from other students, either current

or from previous years.

• Asking help from the professor/TA is fine

• Asking for general help, or discussing with classmates is

fine

• Try to avoid giving completed assignment to someone

else as a reference as in my experience it’s too tempting

8

and the person will “accidentally” submit it as their own

• Just don’t copy someone else’s assignment and submit

it as your own

This includes cut-and-paste or retyping

• Also don’t copy answers off the internet (again, looking

for advice online is fine, but copying code directly is not)

• Don’t use AI tools that do the homework for you! (Like

Microsoft/Github Co-pilot/ChatGPT)

9

Why not AI?

• You’ll note that I’m not a huge fan of AI

• Makes me unusual as it’s the current fad

• You’re here to become an expert on embedded systems

• AI can be subtly wrong, and you can only catch it if you

actually know what’s going on

10

Syllabus – Boilerplate

• Go over boilerplate

11

Advanced Microprocessor Based Design

• *NOT* a direct continuation of ECE471 (Embedded

Systems) No blinking LEDs on embedded boards.

More of a mix of 471 and 473 ideas.

• Modern CPU architecture, DRAM, GPU, storage

• Power and Energy concerns on modern systems.

• Will involve some computer architecture. Don’t worry if

not a Computer Engineer, will try to review completely.

• Will involve reading some papers.

• Will involve logging into Linux servers and running

12

experiments.

13

Modern CPU Related Topics

• Modern CPUs (x86? Intel? AMD? ARM? RISCV?)

• Memory (DDR4/DDR5?), NVRAM

• Disk (SSD)

• Graphics (GPUs)

14

Advanced Microprocessor Based Design

What is an Advanced Microprocessor?

• Desktop?

• Server?

• Supercomputer?

• Embedded?

• They are all converging.

15

Moore’s Law

• Memory Wall

• Power Wall

• Tiny tiny transistors

• More and More Cores

• Something’s Got To Give

16

Microprocessors

• Also known as Central Processing Unit (CPU)

• Do the general purpose calculations in a system

• Originally big, multi-cabinet, multi-board, multi-chip

• The first “micro”processor fit on one chip.

Often regarded as the 4-bit Intel 4004. (history?)

• In the old days you could buy a discrete CPU, plop onto

circuit board, hook up some memory and a terminal,

and you had a computer.

• These days things are a lot more complex.

17

Simple CPU

Program Counter

Memory

+4

Address from

 ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

18

Simple CPU Notes

• Can CPU run high-level code directly?

◦ First compiler change to assembly

◦ Assembler change to machine code

◦ This is the pattern of 1s and 0s CPU expects

• Where does code live?

◦ Harvard vs Von Neumann (code and data separate vs

combined)

◦ Program Counter (PC) or Instruction Pointer (IP)

point to next instruction

19

◦ Next instruction found with incrementer or by taking

target of branch

◦ How do you find next instruction? Is it always 4 bytes?

• Instruction is decoded

◦ Simple architectures can easily find opcode, registers

◦ Register file scratch area for fast access to small

number of values

◦ ALU does arithmetic and logic, results back to register

file

◦ Control flow (branches, jumps, function calls)

◦ Load/store unit to get values from memory

20

Simple System

21

6502

1MHz

Reset

D0
...

D7

A0
...

A15
Memory

 32k

Decoder

CE

R/W

ROM

8K

CE

T
ri

−
S

ta
te

T
ri

−
S

ta
te

CPU

I/O
Keypad

Display
Serial

IRQ R/W

22

Describe some early simple systems

• KIM-1

• Atari 2600

• Apple II

• These all have 8-bit 6502 processors

◦ Designed by Chuck Peddle, UMaine Alumnus

◦ 1MHz, 3 8-bit registers

◦ Up to 64k of RAM (could get more with bank switch)

◦ 3500 transistors

• Modern Raptor Lake estimated 25 billion transistors

23

