
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 September 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Homework #1 was posted, due Friday

• Let me know if you have any trouble logging in

• Yes, sometimes computer architecture research is a lot

of boring measurements.

• Feel free to write scripts when gathering data, if it helps

• If need additional packages (within reason) let me know

• Note the disk on the server is not backed up

1



Some Background on the Homework

• bzip2 from SPEC2006 – compression program, by Julian

Seward (also wrote Valgrind)

• modern replacement is xz (found in SPEC2017)

2



perf examples

• Went through the perf examples from the end of previous

lecture notes again

• Not in as much detail as I’d like as wifi not working on

the laptop

3



Simple CPU (again)

Program Counter

Memory

+4

Address from

ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

Load /

Store

4



Simple CPU – Breakdown

• Program Counter / Instruction Pointer points to next

instruction

Increments each clock and loads next instruction from

memory. If a branch instead loads new address if branch

taken.

• Instruction is decoded. Opcode (says what type of

instruction), Registers to use, possibly an immediate

value.

• Opcode goes to control (usually a PLA) or microcode

5



that splits up signals to all the functional units and tells

them what to do (what kind of operation, whether to

read or write, to branch or not, etc)

• Source register values are read from register file and fed

to ALU

• ALU does math/logic based on control

• Result written back to destination register on register

file.

• If load or store instruction, then address calculated (often

by ALU) and sent to memory. If load, value written to

reg file, if store value to write sent out

6



• Once instruction is done, advance to next instruction.

7



CPU – Design decisions

• Used to be whole classes on this

• These days designing a new architecture from scratch is

often discouraged

• It still occasionally happens

8



Instruction Set Architecture (ISA)

• List of instructions supported by an architecture

• Can guide design of processor

• Often stuck with old design decisions for backwards

compatibility

• What instructions do you need?

9



ISA – baseline Integer Instructions

• ALU/Math: add/sub

What about multiply/divide/modulus? Can you do in

software? Division units are large/power-hungry

• ALU/Logic: and/or/xor

Could you make any logic out of nand instructions? xor

is turning complete on x86, can change any program

into a series of xor

• Shifts/Rotates

• nop? often a pseudo-op

10



• memory: load/store?

Can you operate direct on memory?

• compare (can be implemented with subtract and throw

away result)

• branch: branch if zero/not zero

• unconditional branch

• function call (save return address)

• syscall?

11



RISC / CISC Discussion

• Simple decode. Load/store. Fixed instruction width.

3-operand.

• MIPS is classic RISC

• x86 is classic CISC (with complex instructions)

Though internally x86 executes uops, RISC

• ARM (predication, auto-increment, barrel shifter)

Called RISC but has complex instructions

12



RISC / CISC Example

Memory copy: Load a byte from pointer, store byte to another pointer, increment

pointers, loop until counter counted down.

CISC RISC
rep movsb ldb r0,[r1]

add r1,r1,#1

stb r0,[r2]

add r2,r2,#1

sub r3,r3,#1

cmp r3,#0

bne loop

Note: if ARM32 can optimize a bit

13



Code Density

• Traditional RISC fixed 4-byte (32 bit) instructions

• CISC: x86 1-15 byte instructions (variable)

• Can have hybrid, Thumb/Thumb2 (2 and 4 byte)

14



Common ISAs

• x86

• ARM

• RISC-V

• Other RISC: MIPS, Power, Alpha, SPARC, PA-RISC, SH

• Other CISC: m68k, VAX, IBM 360

• itanium

• Lots more, Linux alone supports large number

15


