
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 4

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 due Friday

1

Last Time

• Briefly discussed the bare minimum instructions needed

on a RISC-like CPU to have a decent computer

2

ISA Extensions

• Lots of other stuff *can* be added

• Bit manipulation

• Dedicated stack instructions (push/pop)

• Floating Point

• DSP instructions

• String copy

• Vector instructions (MMX/SSE/AVX/NEON/SVE)

• Crazy polynomial/vector insns

3

System Manipulation

• Syscall to call into kernel

• Setup of things like IRQ/DMA

• Special system registers, Model Specific Registers

(MSRs)

◦ CPU detection (cpuid)

◦ Hardware performance counters

◦ Cache config

4

Other ISA Decisions

• How many arguments to opcode? 2 or 3?

• Is there a Flags register? Maybe comparison-result

registers?

• Predicated/conditional execution

• Number of registers? 1/3/8/16/32/128/windowed?

• Special registers (Zero Register, Link Register)

• Branch or Memory Delay Slots

• RISC vs CISC

• Big or Little Endian?

5

Other ISA Decisions – Bitsize

• Bitsize (4, 8, 16, 32, 64 bit?) (or 18/36 bit?)

• What does that mean? Complex issue.

◦ Size of registers?

◦ ALU?

◦ Memory Address

◦ Range?

◦ Data bus width?

• Internal vs External (4-but ALU on z80, AMD

Zen double-pumped 256 bit for AVX 512, bitslice

6

architectures

7

ISA Encoding

• RISC: Fixed-width 4-byte (32-bit) instructions?

• CISC: Completely variable sized instructions (x86 1-15

bytes?)

• VLIW: (3-instructions in a 128-bit package?)

• Embedded (THUMB, THUMB2) mostly 16-bit (Code

Density)

8

Microcoding

• Implementing complex CISC instructions in verilog/transistors

complex

• Instead, have simple specialized RISC-like core that can

be programmed

• Microprogramming, instructions unpacked into sets of

instructions

Simple might be 1:1 but complex might end up tens to

hundreds

• 8086 has been reverse engineered

9

• Modern x86 has uops

10

Other Design Constraints

• Number of pins

◦ DIP (dual inline package): 4004 = 16,

z80/6502/8080/8086 = 40

◦ PGA (pin grid array): Pentium = 273

◦ LGA (land grid array) pins on socket not chip):

Sandybridge = 1000+

• Power

◦ Original ARM 1W so could use cheaper plastic vs

ceramic case (ended up 0.1W)

11

Simple Computer Redux

12

6502

1MHz

Reset

D0
...

D7

A0
...

A15
Memory

 32k

Decoder

CE

R/W

ROM

8K

CE

T
ri

−
S

ta
te

T
ri

−
S

ta
te

CPU

I/O
Keypad

Display
Serial

IRQ R/W

13

• Clock crystal keeps everything in sync (can you run

without clock? Yes, asynchronous chips, harder to

design)

• Reset button to restart things, start PC at known address

• Address bus, addresses are put out. 16-bit address space,

16 pins, 216 (64k) addresses.

This is used to address instructions *and* data

Usually tri-state buffers are used to protect CPU pins

and also allow multiple devices to drive address bus if

needed

• Data bus: bi-directional (read/write)

14

• To read memory: CPU puts address on address bus,

says want to read. Decoder logic enables proper device.

Device decodes address, finds 8-bit value, puts it on data

bus. CPU latches the result and does whatever with it

(puts in instruction buffer, puts in register)

• To write memory: CPU puts data on data bus, address

on address bus, sets write signal.

• Reading from ROM much like RAM, only you can’t write

it

• Memory-mapped I/O, the device is enabled by decoder

when address matches. Puts data on data bus just like

15

RAM would.

If I/O wants CPU attention it can pull an IRQ line to

request interrupt. Otherwise CPU must poll.

• I show a 6502 CPU in example. Simple CPU, found in

Apple II, Commodore, NES, many others. Designed in

part by UMaine alum Chuck Peddle. Not often used

for quick designs like shown because the clock circuitry

was quite complex (but better than say the 8080 which

needed all kinds of crazy voltages).

16

How Are Modern Systems Different?

• A lot of the I/O and memory controller pushed onto chip

• No Address/Data busses anymore.

• Memory is almost like a network/packet thing where

addresses and data sent out serially

• Same with expansion, like USB or PCIe

17

More Complex Early computers

• Original IBM PC

• Additional helper chips to 8086. Keyboard controller,

interrupt controller, DMA controller (did memory

refresh, etc), programmable interval timer

• ISA system bus, more or less just exposed CPU

address/data bus to slot connectors

• Dynamic memory

• 8086 had separate I/O port space

• Memory too slow, had wait states

18

• 8086 was full 16-bit CPU. PC uses 8088 which had only

8-bit data bus (but same ISA!). Also 24-bit address bus,

played games to address properly.

19

Modern Systems Even More Complex

• PCI bus

• North/South Bridges

• Everything on SoC

• Fast memory much more complex

• Everything else we are going to learn about in this class.

20

On simple processors often take multiple
cycles to finish

• 6502, 1MHz, instructions generally 1 cycle per mem

access

◦ $69,$0A - adc #10 - 2 cycles (add immediate)

◦ $65,$10 - adc $10 - 3 cycles (add zero page)

◦ $70,$34,$12 - adc $1234,X - 4+ cycles (add absolute

indexed)

can take extra cycle if wraps page (carry from add)

21

IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)

22

How can we increase IPC?

23

