
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 was due

• Homework #2 will be posted. A reading on measurement

bias, with some short answer questions.

1

On simple processors often take multiple
cycles to finish

• 6502, 1MHz, instructions roughly 1 cycle per mem access

◦ $69,$0A - adc #10 - 2 cycles (add immediate)

◦ $65,$10 - adc $10 - 3 cycles (add zero page)

◦ $70,$34,$12 - adc $1234,X - 4+ cycles (add absolute

indexed)

can take extra cycle if wraps page (carry from add)

• Racing the beam and Vapor Lock

2

IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)

3

How can we increase IPC?

4

Advanced CPUs

5

Some sample code

i n t i ;

i n t x [1 2 8] ;

f o r (i =0; i <128; i++) {
x [i]=0;

}

How do you convert this to something the CPU

understands?

6

Roughly Equivalent Assembler
mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to x array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; want to write 0 to x[i]

str r3 ,[r1 ,r2] ; x[i]=0

add r0 ,r0 ,#1 ; i++

cmp r0 ,#128 ; is i==128?

bne loop ; if not , keep looping

; Note: can do lots of code hoisting here

.bss

.lcomm x ,128*4

7

An aside: how could you optimize this
code?

• Unroll the loop?

• Code hoisting (move the pointer load outside the loop)

• Use larger-sized writes (64-bit?)

• Use ARM barrel-shift addressing modes

• Crazy x86 instructions rep stosb

8

Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

Program Counter

Memory

+4

Address from

 ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

9

IPC Metric

• Instructions per Cycle

• Higher is better

• Inverse of CPI (cycles per instruction)

10

How can we increase IPC?

• Simple CPU must have cycles as slow as slowest

instruction

• What if we break instructions up to take multiple cycles?

• What if we could overlap them?

11

Pipelined CPUs

• 5-stage MIPS pipeline

• Have you ever used one? The first time I used UNIX:

MIPS R3000 in an SGI Personal Iris 4D/35

• Original Playstation

IF ID EX MEM WB

12

Pipelined CPUs

• IF = Instruction Fetch, Update PC

Fetch 32-bit instruction from L1-cache

• ID = Decode, Fetch Register Values

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

13

Cycle 1

IF mov r0,#0

ID

EX

MEM

WB

14

Cycle 2

IF ldr r1,=x

ID mov r0,#0

EX

MEM

WB

15

Cycle 3

IF lsl r2,r0,#2

ID ldr r1,=x

EX mov r0,#0

MEM

WB

16

Cycle 4

IF mov r3,#0

ID lsl r2,r0,#2

EX ldr r1,=x

MEM mov r0,#0

WB

17

Cycle 5

IF str r3,[r1,r2]

ID mov r3,#0

EX lsl r2,r0,#2

MEM ldr r1,=x

WB mov r0,#0

18

Benefits/Downside

• Latency higher (5 cycles) but average might be 1 cycle

• Why bother? Can you run the clock faster?

• From 2-stage to Pentium 4 31-stage

19

Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?
EX add r1,r0,r0

MEM ldr r0,[r1]

WB mov r1,r3

• WAR – “anti” dependency – not a problem if commit in

order

20

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

21

Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

22

Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

IF ???

ID beq

EX cmp r0,r1

23

Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

24

Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

EX add r1,r1,r0

MEM ldr r0,[r3]

25

The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

26

Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,

27

a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

28

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

29

Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Types

◦ Static Multi-Issue – at compile time, VLIW

◦ Dynamic

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

30

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

31

Register Renaming

• Loop unrolling

• If only a “name” dependence

• Architectural register doesn’t have to be updated until

written to

• Once written to it is essentially a separate register despite

the same name

ldr r1 ,[1024] ; ldr r100 ,[1024]

add r1 ,#5 ; add r100 ,#5

str r1 ,[2048] ; str r100 ,[2048]

ldr r1 ,[1025] ; ldr r101 ,[1025]

add r1 ,#5 ; add r101 ,#5

str r1 ,[2049] ; str r101 ,[2049]

32

