
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 6

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 September 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Homeworks

◦ HW#1 will be graded soon

◦ HW#2 due Friday, posted a bit late (a reading)

• Optional Readings

◦ Pipeline Discussion: Computer Organization (RiscV)

/ Patterson and Hennesey

Section 4.11 “Real Stuff: The ARM Cortex-A53 and

Intel Core i7 Pipelines”

◦ Power/Energy: Computer Architecture / Hennesey

1

and Patterson

Section 1.5 “Trends in Power and Energy in Integrated

Circuits”

2

Pipeline Question from Last Time

• From 2-stage to Pentium 4 31-stage?

What can you do with that many?

P6,10:Fetch*2,Decode*3,Rename,ROB Rd,Rdy/Sch,Dispatch,Exec

P4,20:NxtIP*2,Fetch*2,Drive,Alloc,Rename*2,Queue,Sch*3,Disp*2,

RF*2,Ex,Flgs,BrCk,Drive

3

How to Take Advantage of Parallelism in
Code

• Eventually Physics gets in the way

• You can’t make a single CPU core any faster

• What can you do with all the extra transistors?

4

Finding Parallelism with Software

• Can have a super-scalar multi-pipeline chip, but it’s

expensive to decode and find dependencies on the fly

• Can you do this in software at compile time instead?

• VLIW as found in itanium

• Compiler pre-finds 3 instructions with no dependencies

that can run at once on 3-wide superscalar

• Turns out this is a really hard software problem

5

Finding Parallelism with Vector Math

• Certain types of math are extremely parallel

• Common example is vector addition, where each sub-

addition has no dependencies and can happen in parallel

• Can design SIMD (single-instruction multiple-data)

instructions that with one instruction can work on very

wide datatypes

6

SSE example (From Wikipedia)

Doing a 4 element single-prevision vector add would take

4 separate floating point adds:

v e c r e s . x = v1 . x + v2 . x ;

v e c r e s . y = v1 . y + v2 . y ;

v e c r e s . z = v1 . z + v2 . z ;

v e c r e s .w = v1 .w + v2 .w;

With SSE you only need one add instruction:

7

movaps xmm0, [v1] ; xmm0 = v1 .w : v1 . z : v1 . y : v1 . x

addps xmm0, [v2] ; xmm0 = v1 .w+v2 .w : v1 . z+v2 . z : v1 . y+v2 . y :

v1 . x+v2 . x

movaps [v e c r e s] , xmm0

aps=aligned packed single-precision float

Project idea?

8

SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon / A64 SIMD / “Scalabale Vector

Extensions” SVE

9

SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product

10

AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

11

AVX-512 / x86

• Originally on (discontinued) Xeon Phis (knights landing)

• now 512 bits, ZMM0-ZMM31

• Problems, power hungry, chip have to scale down

frequency so perf tradeoff complex

• Due to P/E cores on hybrid chips Intel disabled on Alder

Lake and Raptor Lake

12

Finding Parallelism with More Cores

• Multi-core / Chip-Multi Processing (CMP)

• Moore’s law gives you lots of transistors.

• Why not just put more cores on the die?

• Exploits multi-programmed parallelism rather than

instruction-level parallelism

13

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

14

Multi-core Programming

• One way is multi-programming, have one core for each

task

That often only works up to about 4-8 cores though

• Other option is multi-threaded programming, writing

programs to split work among different cores

• This is hard. Really hard.

• See ECE574 cluster Computing

15

Multi-core Programming Challenges

• Distributed vs Shared Memory

• Shared Memory most common

• Memory consistency models, how to instructions

interleave https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/

• Software can have race conditions, need locking, hard to

get right

• Hardware has to ensure cache coherency (protocols)

16

https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

17

MESI

• Modified, Exclusive, Shared, Invalid

18

Hybrid/Heterogeneous Core Systems

• Do all cores need same features?

• ARM big.LITTLE systems, a few powerful cores for

compute heavy tasks, many more power-efficient cores

for regular workloads. Can help battery life

• Recent Intel has P (performance) and E (efficiency) cores

doing similar

• Makes CPU job scheduling much harder

• Also issues with performance counters

• TODO: diagram

19

Finding Parallelism with better Pipeline
Utilization

• On super-scalar systems pipelines might not always be

full, especially if waiting on memory

• How can we utilize those wasted pipeline bubbles

20

Hardware Multi-threading

• SMT (simultaneous multithreading), Intel Hyperthreading

• Hyrbid of multi-core and multi-pipeline

• Why not duplicate fetch/decode logic, and have two

programs execute at once on same set of pipelines.

• If one is idle/stalled, run instructions from other thread

• Looks to OS as if you have two cores, but really just one

with two instruction dispatch stages

• Extra logic to make sure that pipelines used fairly, the

results get committed to the right register file, etc.

21

SMT Variations

• Fine-grained – rotate threads every cycle

• Coarse-grained – rotate threads only if long latency event

happens (cache miss)

• Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Aside on Sun Niagara

22

SMT Downsides

• Can actually slow down code (especially if both threads

trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Security? Information Leakage?

• How wide (Sun Niagara aside)

23

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

24

Real-World Pipelining Examples (from
P&H)

• ARM Cortex-A53 (found in Pi3)

◦ Eight-stage pipeline

◦ Dynamic multi-issue, two instructions

◦ Static in-order pipeline

◦ First 3 stages fetch two insns at a time, filling a

13-entry instruction queue (branch predictors)

◦ Pipelines: one for load, one for store, two for ALU,

one multiply, one divide, one FP/SIMD (mul/div/sqrt)

25

one FP/SIMD for other

◦ What’s the peak possible IPC?

◦ Patterson and Hennesey report SPEC CPU 2006 INT

results. Best case is hmmer (search for gene sequence)

with IPC 1.03 (CPI 0.97). Worst is mcf (public

transit vehicle scheduling) IPC 0.12 (CPI 8.56). Mostly

memory constrained.

◦ In-order so depends a lot on compiler to get good

performance.

◦ 100mW (1 core at 1GHz)

• Intel Core i7 920 (Nehalem, 2008)

26

◦ Decodes CISC instructions to micro-ops

◦ Can issue up to 6 micro-ops per cycle

◦ 14 pipeline stages

◦ dynamic out-of-order with speculation

◦ register renaming, useful with speculation, as no need

to store snapshot to undo speculation, just mark the

speculated register results as invalid

◦ Instruction fetch, fetches 16 bytes. If wrong, 15 cycle

penalty

◦ Predecode instruction buffer – transform 16 bytes (x86

insns 1-15 bytes) into x86 insns

27

◦ 18-instruction instruction queue.

◦ Micro-op decode – three decoders handle decode of

instructions that map to 1 uop. One other handles

microcode engine that produces longer sequences, up

to 4uops a cycle.

◦ Can also do micro-op fusion (fuse two different insns

into one uops, such as cmp/branch)

◦ Micro-ops go ins a 28-entry uop buffer

Loop Stream Detector – if code is in tight loop (less

than 28 insns) it can execute from this buffer and not

need to fetch.

28

◦ Instruction issue. Reservation station. Up to six uops

can be issued

◦ Finished instructions go back to reservation station

and retirement unit, wait to update register state when

determined it is no longer speculative.

◦ Once instruction hits the head of the reorder buffer,

instruction commits and is removed from re-order

buffer

◦ Even though 6 uops can issue, only 4 can be finished

a turn? What’s the peak IPC? (4)

◦ Again, SPECCPU. Best is libquantum IPC=2.2 (CPI

29

0.44). Worst, again, mcf IPC=0.37 (CPI=2.67)

◦ Where do the wasted cycles go? Stalls? But also

mis-speculation where work is done and then thrown

out.

◦ 130 Watts (2.66GHz)

30

