
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 September 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#3

• RAPL also used for “TurboBoost”

• Reading: Hennessey and Patterson 5th edition (available

online from UMaine Library) Chapter 3.3 Branch

Prediction

1



The Branch Problem

• With a pipelined processor, you may have to stall waiting

until branch outcome known before you can correctly

fetch the next instruction

• Conditional branches are common. On average every

5th instruction [cite?]

• What can you do to speed things up?

2



Branch Prediction

• One solution is speculative execution.

Guess which way branch goes.

• Good branch predictors have a 95% or higher hit rate

• Downsides?

If wrong, in-flight thrown out, have to replay.

• Speculation wastes power

• Also, it turns out, there are security issues

3



Speculative Execution Aside

• What do you do if guess wrong?

• What if an exception happens on the wrong path (pointer

dereference)

• What is you hit another branch on the wrong path?

• What if you load/store memory on the wrong path?

• What if the wrong path leaks state?

4



Branch Predictor Implementations

How would you implement a predictor?

5



Static Prediction of Conditional Branches

• Backward taken

• Forward not taken

• Can be used as fallback when nothing else is available

6



Common Access Patterns – For Loop
// loop with backward branch

for(i=0;i <100;i++) SOMETHING;

mov r1 ,#0

b label2

label:

SOMETHING

add r1 ,r1 ,#1

label2:

cmp r1 ,#100

bne label

7



for Branch Behavior

• Cond branch executed 101 times (because checks before

loop entry)

• No branch predictor – 101 stalls

• Other way to avoid problem (branch delay slot on MIPS)

• Static prediction BTFN – 100 times predicted right, 1

time wrong (exit)

• 99% correct predict rate (for this particular)

Depends on iterations, 50% to 99+%

8



Common Access Patterns – While Loop
// loop with forward branch

x=0; while(x<100) { SOMETHING; x++;}

mov r1 ,#0

label:

cmp r1 ,#100

bge done

SOMETHING

add r1 ,r1 ,#1

b label

done:

9



while Branch Behavior

• Cond branch executed 101 times (because checks before

loop entry)

• No branch predictor – 101 stalls (unless branch delay

slot)

• Static BTFN prediction – 100 times predicted right, 1

time wrong (exit)

• 99% correct predict rate

10



Common Access Patterns – Do/While Loop
x=0; do { SOMETHING; x++;} while(x <100);

mov r1 ,#0

label:

SOMETHING

add r1 ,r1 ,#1

cmp r1 ,#100

blt label

done:

11



while Do/While Behavior

• No branch predictor – 100 stalls (unless branch delay

slot)

• Static BTFN prediction – 99 times predicted right, 1

time wrong (exit)

• 99% correct predict rate

12



Notes

• Optimizing compiler will optimize all above to same for

loop (tried it). Why?

• Because loop unrolling becomes possible?

13



Common Access Patterns – If/Then

A lot harder to predict than loops
if (x) { FOO } else { BAR}

cmp r1 ,#0

beq else

then:

FOO

b done

else:

BAR

done:

14



Avoiding Branches in If/Then

• You can try to avoid branches with fancy coding

• Some chips have conditional move instructions (x86)

• ARM32 has conditional/prefixed execution

ARM:

cmp r1 ,#0

FOOeq

BARne

15



Common Access Patterns – If/Then
Behavior

• If x is true, static = 100%, if x is false, 0%

• Assuming completely random, average 50% miss rate

• ARM can use conditional execution/predication to avoid

this in simple scenarios

16



How can we Improve Things?

17



Branch Prediction Hints

• Give compiler (or assembler) hints

• likely() (maps to builtin expect())

• unlikely()

• on some processors, (p4) hint for static

• others, just move unlikely blocks out of way for better

L1I$ performance

• Linux did this – but turns out people can be bad at

hinting

18


