
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 September 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#4 was posted. Branch Prediction.

1



Caches

“Almost all programming can be viewed as an exercise in

caching.” – Terje Mathisen

First Data Cache: IBM System/360 Model 85, 1968

Good survey paper, Ajay Smith, 1982

Computer Architects don’t like to admit it, but no amazing

breakthroughs in years. Mostly incremental changes.

2



What is a cache?

• Small piece of fast memory that is close to the CPU.

• “caches” subsets of main memory

• Managed automatically by hardware (can you have a

software controlled cache? Scratchpad memory? Why

aren’t they used more? Hard to do right.)

3



Memory Wall

• Processors getting faster (and recently, more cores) and

the memory subsystem cannot keep up.

• Modern processors spend a lot of time waiting for

memory

• “Memory Wall” term coined by Wulf and McKee, 1995

4



Exploits Program Locality

• Temporal – if data is accessed, likely to be accessed

again soon

• Spatial – if data is accessed, likely to access nearby data

Not guaranteed, but true more often than not

5



Memory Hierarchy

There’s never enough memory, so a hierarchy is created of

increasingly slow storage.

• Older: CPU → Memory → Disk → Tape

• Old: CPU → L1 Cache → Memory → Disk

• Now?: CPU → L1/L2/L3 Cache → Memory → SSD

Disk → Network/Cloud

6



Cache Types

• Instruction Cache (I$)
◦ holds instructions

◦ often read only (what about self-modifying code?)

◦ can hold extra info (branch prediction hints, instruction

decode boundaries)

◦ Trace cache variant

• Data Cache (D$) – holds data

• Unified Cache

◦ holds both instruction and data

7



◦ More flexible than separate

8



Cache Circuitry

• SRAM – flip-flops, not as dense

• DRAM – fewer transistors, but huge capacitors

chips fabbed in DRAM process slower than normal CPU

logic

9



SRAM/DRAM Circuitry

Column Decoder

R
o

w
 D

e
c
o

d
e
r

Sense Amps

Memory Array

word line

b
it

 l
in

e

WL

!BL BL

DRAM

SRAM

WL

!BL BL

10



SRAM/DRAM Benefits

• Upside of DRAM? Smaller, can fit more.

• Upside of SRAM? No need to refresh.

• Which is faster/lower energy? Used to be SRAM but

not so clear anymore.

• Why not use DRAM in caches? Process tech doesn’t

line up well. Process for good capacitors makes slower

logic.

• Recent advances (trench capacitors, etc) have changed

this a bit. IBM Power machines with large DRAM

11



caches.

12



How to see if data in cache

• In addition to data, store address

• For 1k cache should you have 1k addresses?

Usually you have blocks of bytes, not just one byte

If (for example) 16-bytes on 32-bit system then only

need 28 bits of tag

• A cache like this with just tags and data and data can

go anywhere is called fully-associative

13



Cache Associativity – Fully Associative

• Also known as content-addressable memory (CAM)

• an address can map to any cache line

• Downside: need to compare tag against all entries

◦ This either takes lots of comparators (area/power)

◦ Or can have 1 comparator but take lots of time

14



Cache Associativity – Direct Mapped

• Instead can use a few bits from address to separate

addresses to “lines”

• Sort of like how we did branch predictors

• Only need one comparator to check tag (so fast / low

area)

• Downside: can have aliasing if multiple addresses we

need map to the same line

15



Cache Associativity – Set Associative

• Compromise between direct mapped and fully associative

• Map to a cache line, but there can be multiple “ways”

• For a 4-way cache, you need to check 4 tags (doable)

• Helps avoid aliasing problems

• Can still have wasted space in cache (compared to full)

if for some reason some addresses don’t map evenly

16



Cache Structure
Way 0 Way 1

line Tag Data Tag Data
0 1 00 00 00 00 0
1 1 00 10 00 00 1 00 00 00 00
2 0 0
3 0 0
4 0 0
5 0 0

. . .
b 0 0
c 0 0
d 0 0
e 0 0
f 0 0

17



Cache Terms

• Line – which row of a cache being accessed

• Blocks – size of data chunk stored by a cache

• Tags – used to indicate high bits of address; used to

detect cache hits

• Sets (or ways) – parts of an associative cache

18



What to do on Cache Miss?

• If miss in cache, need to bring in the missing data

• If existing data is there need to evict it

• How can you tell if valid data there? (valid bit)

• In set-associative cache, how do you pick which way to

evict?

19



Replacement Policy

• FIFO

• Least Recently Used (hard to track when way count gets

large)

• Round-robin

• Random (Surprisingly effective)

• Pseudo-LRU (not-most-recently-used?)

• Spatial

20



Load Policy

• Critical Word First – when loading a multiple-byte line,

bring in the bytes of interest first

21



Stores are a Problem

• As with memory order in pipelines, stores are much more

of a pain than loads are

22



Consistency

Need to make sure Memory eventually matches what we

have in cache.

• write-back – keeps track of dirty blocks, only writes back

at eviction time. poor interaction on multi-processor

machines

• write-through – easiest for consistency, potentially more

bandwidth needed, values written that are discarded

• write-allocate – Usually in conjunction with write-back

Load cacheline from memory before writing.

23



Inclusiveness

• Inclusive – every item in L1 also in L2

simple, but wastes cache space (multiple copies)

• Exclusive – item cannot be in multiple levels at a time

24


