ECE 571 – Advanced Microprocessor-Based Design Lecture 13

Vince Weaver <https://web.eece.maine.edu/~vweaver> vincent.weaver@maine.edu

2 October 2024

Announcements

- $HW#2$ grades posted
- Don't forget $HW#4$. A little trickier than previous as you run on 3 different machines

HW#3 Review – The Benchmarks

- \bullet sleep does nothing
- stream stresses memory subsystem
- matrix (ATLAS) stresses the CPU
- iozone disk I/O

HW#3 Review – The System

• Intel (R) Xeon (R) CPU E5-2640 v3 @ 2.60GHz 20MB cache, 22nm, 90W TDP

[https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20](https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html)m-ca

[html](https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html)

- 80GB DDR4 RAM
- Regular spinning hard drive

Energy

HW#3 Power

Power

HW#3 Notes

- highest power pkg: matrix
- highest power dram: matrix
- cores: always zero This is likely a bug with the Haswell-EP chips Intel slow to acknowledge this
- server class does not have integrated GPU
- guesses: old, virtual machine
- HPL (20k): pkg: 117W dram: 11W
- stream stresses memory. iozone, CPU is waiting?

HW#3 Energy-Delay

Energy-delay

HW#3 Energy-Delay Discussion

- Interesting, this year 32 threads won everything. In past years this was not the case.
- e) scaling? only can show strong (problem size same) ◦ Poorly written benchmark? (possible) ◦ Not enough memory? (unlikely, benchmark from 2001)
- f) 32 threads, but only 16 cores
- g) TDP=90W for one package, but we have two

Oh No, More Caches!

Other Cache Types

- Victim Cache store last few evicted blocks in case brought back in again, mitigate smaller associativity
- Assist Cache prefetch into small cache, avoid problem where prefetch kicks out good values
- Trace Cache store predecoded program traces instead of (or in addition to) instruction cache

Virtual vs Physical Addressing

Programs operate on Virtual addresses.

- PIPT, PIVT (Physical Index, Physical/Virt Tagged) easiest but requires TLB lookup to translate in critical path
- VIPT, VIVT (Virtual Index, Physical/Virt Tagged) No need for TLB lookup, but can have aliasing between processes. Can use page coloring, OS support, or ASID (address space id) to keep things separate

Cache Miss Types

- Compulsory (Cold) miss because first time seen
- Capacity wouldn't have been a miss with larger cache
- Conflict miss caused by conflict with another address (would not have been miss with fully assoc cache)
- Coherence miss caused by other processor

Fixing Compulsory Misses

Prefetching

- Hardware Prefetchers very good on modern machines. Automatically bring in nearby cachelines.
- Software loading values before needed also special instructions available
- Large-blocksize of caches. A load brings in all nearby values in the rest of the block.

Fixing Capacity Misses

• Build Bigger Caches

Fixing Conflict Misses

- More Ways in Cache
- Victim Cache
- Code/Variable Alignment, Cache Conscious Data Placement

Fixing Coherence Misses

• False Sharing – independent values in a cache line being accessed by multiple cores

Capacity vs Conflict Miss

- It's hard to tell on the fly what kind of miss
- For example: to know if cold, need to keep list of every address that's ever been in cache
- To know if it's capacity, need to know if it would have missed even in a fully associative cache
- Otherwise, it's a conflict miss

Cache Parameters Example 1

 32 k B cache (2^{15}) , direct mapped (2^0) 32 Byte linesize (2^5) , 32-bit address size (2^{32})

offset =
$$
log_2(linesize) = 5
$$
 bits
lines = $log_2((cachesize/\#ways)/linesize) = 1024$ lines
(10 bits)

 $tag = addresssize - (offset bits + line bits) = 17 bits$

