
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#2 grades posted

• Don’t forget HW#4. A little trickier than previous as

you run on 3 different machines

1



HW#3 Review – The Benchmarks

• sleep – does nothing

• stream – stresses memory subsystem

• matrix (ATLAS) – stresses the CPU

• iozone – disk I/O

2



HW#3 Review – The System

• Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz

20MB cache, 22nm, 90W TDP

https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.

html

• 80GB DDR4 RAM

• Regular spinning hard drive

3

https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/83359/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html


HW#3 Energy

Energy

sleep stream matrix iozone

pkg 206 334 628 594

ram 27 96 54 90

time 10.0s 8.8s 3.5s 21s

4



HW#3 Power

Power

sleep stream matrix iozone

pkg 20 42 180 26

ram 2.6 11 15 4.2

5



HW#3 Notes

• highest power pkg: matrix

• highest power dram: matrix

• cores: always zero

This is likely a bug with the Haswell-EP chips

Intel slow to acknowledge this

• server class does not have integrated GPU

• guesses: old, virtual machine

• HPL (20k): pkg: 117W dram: 11W

• stream stresses memory. iozone, CPU is waiting?

6



HW#3 Energy-Delay

Energy-delay

1 2 4 8 16 32 64
E 15k 9.3k 6.9k 5.0k 4.5k 4.2k 4.8k

time 296s 164s 88s 46s 35s 29s 39s
ED 4440k 1525k 607k 230k 156k 122k 187k
ED2 750M 250M 53M 11M 5.5M 3.5M 7.2M
Power 51W 57W 78W 109W 129W 145W 123W
Scaling — 1.8x 3.3x 6.4x 8.5x 10.2x 7.6x

7



HW#3 Energy-Delay Discussion

• Interesting, this year 32 threads won everything. In past

years this was not the case.

• e) scaling? only can show strong (problem size same)

◦ Poorly written benchmark? (possible)

◦ Not enough memory? (unlikely, benchmark from 2001)

• f) 32 threads, but only 16 cores

• g) TDP=90W for one package, but we have two

8



Oh No, More Caches!

9



Other Cache Types

• Victim Cache – store last few evicted blocks in case

brought back in again, mitigate smaller associativity

• Assist Cache – prefetch into small cache, avoid problem

where prefetch kicks out good values

• Trace Cache – store predecoded program traces instead

of (or in addition to) instruction cache

10



Virtual vs Physical Addressing

Programs operate on Virtual addresses.

• PIPT, PIVT (Physical Index, Physical/Virt Tagged) –

easiest but requires TLB lookup to translate in critical

path

• VIPT, VIVT (Virtual Index, Physical/Virt Tagged) – No

need for TLB lookup, but can have aliasing between

processes. Can use page coloring, OS support, or ASID

(address space id) to keep things separate

11



Cache Miss Types

• Compulsory (Cold) — miss because first time seen

• Capacity — wouldn’t have been a miss with larger cache

• Conflict — miss caused by conflict with another address

(would not have been miss with fully assoc cache)

• Coherence — miss caused by other processor

12



Fixing Compulsory Misses

Prefetching

• Hardware Prefetchers – very good on modern machines.

Automatically bring in nearby cachelines.

• Software – loading values before needed

also special instructions available

• Large-blocksize of caches. A load brings in all nearby

values in the rest of the block.

13



Fixing Capacity Misses

• Build Bigger Caches

14



Fixing Conflict Misses

• More Ways in Cache

• Victim Cache

• Code/Variable Alignment, Cache Conscious Data

Placement

15



Fixing Coherence Misses

• False Sharing – independent values in a cache line being

accessed by multiple cores

16



Capacity vs Conflict Miss

• It’s hard to tell on the fly what kind of miss

• For example: to know if cold, need to keep list of every

address that’s ever been in cache

• To know if it’s capacity, need to know if it would have

missed even in a fully associative cache

• Otherwise, it’s a conflict miss

17



Cache Parameters Example 1

32kB cache (215), direct mapped (20)

32 Byte linesize (25), 32-bit address size (232)

offset = log2(linesize) = 5 bits

lines = log2((cachesize/#ways)/linesize) = 1024 lines

(10 bits)

tag = addresssize - (offset bits + line bits) = 17 bits

tag line offset
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18


