
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 16

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 October 2024

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#5 (caches)

• Useful reading: “When prefetching works, when it

doesn’t and why” paper by Lee et al.

1



HW#4 (brpred) – Haswell-EP Cache Ratio

• Bzip2

instr=19,698M, branches=3,049M,conditional=2,582M

branch:instr 15% (1:6),conditional 13% (1:7)%

If way too low, entering command wrong (no file error

low counts)

• equake l

instr=1,424B,branches=153B,conditional=145B

branch:instr 11% (1:9), conditional 10% (1:10)

2



HW#4 (brpred) – ARM64 Cache Ratio

• Note there are a lot of branch events avail on ARM64

• bzip2 branch ratio:

instr=18,668M, branches=2,674M, 14% (1:7)

• equake l branch ratio:

instr=1,719B, branches=295B, 17% (1:6)

3



HW#4 – notes on ARM events

• br immed spec [Branch speculatively executed,

immediate branch]

• br indirect spec [Branch speculatively executed, indirect

branch]

• br mis pred [Branch mispredicted]

• br pred [Predictable branch]

• br return spec [Branch speculatively executed, procedure

return]

• btb mis pred [BTB misprediction]

4



HW#4 (brpred) – Branch Miss Rates

• Haswell-EP

bzip2 = 6.50%, equake l = 0.51%

• AMD EPYC

bzip2 = 6.4%, equake l = 0.44%

• ARM64

bzip2=4.8%, equake l = 0.6%

• Ages of machines:

haswell-ep september 2014, epyc 7251 June 2017,

ampere 2018

5



HW#4 (brpred) – Speculative Execution

• Speculative execution Haswell-EP

◦ bzip2: roughly 74% retired

◦ equake l: roughly 56% retired

6



HW#4 Questions – Why Branch Ratio
Differ?

• Compiler being stupid? These are SPEC benchmarks so

you can bet that these benchmarks are being optimized

as completely as possible.

• Floating point vs Integer code. Floating point, like

equake, tends to have lots of regular loops over big

blocks of calculations. Integer code like compilers and

compression reads user data and makes decisions, so

many more if/then loops on irregular data.

7



• How could you determine the cause?

8



HW#4 Questions – Arch Branch Ratio
Differ?

• BR ratio on bzip Haswell/arm64?

• Actually about the same

• On ARM32 it’s more ARM32 is 1:16 (why? probably

conditional execution. How could you tell?) (run 32-bit

executable on 64-bit or vice-versa)

9



HW#4 Questions – Miss rates differ

• equake vs bzip

• FP vs Int program.

• FP has more loops, Loops easier to predict.

10



HW#4 Questions – vs Raptor Lake

• Raptor Lake machine 10 years newer than Haswell-EP

• Branch predictor doesn’t seem to have improved much

in that time

11



HW#4 Questions – Speculative Execution

• Retired instructions.

• bzip2: roughly 74% retired,

• equake l: roughly 54% retired

• So in theory bzip2 is more power efficient

12



HW#4 Writing a program to give 50%

• What kind of benchmark?

• Random number generation.

• How many branches in random()? Divide-based pseudo-

number gen?
• Results below on ivybridge

branch-mul (pseudo-random, 2 branches per loop)

5000138 4999862

20,123,251 branches # 228.926 M/sec

5,004,391 branch-misses # 24.87% of all branches

branch-rand (rand(), 17 branches per loop)

170,143,753 branches # 726.443 M/sec

10,358,447 branch-misses # 6.09% of all branches

branch-random (random(), 15 branches per loop)

150,139,161 branches # 719.563 M/sec

10,622,205 branch-misses # 7.07% of all branches

13



Hardware Prefetching

14



HW Prefetch Strategies – icache

• Bring in two cache lines

• Branch predictor can provide hints, targets

• Bring in both targets of a branch

15



HW Prefetch Strategies – dcache

• Bring in next line – on miss bring in N and N+1 (or

more?)

• Demand – bring in on miss (every other access a miss

with linear access)

Tagged – bring in N+1 on first access to cache line (no

misses with linear access)

16



Hardware Prefetching – Stride Prefetching

• Stride predictors – like branch predictor, but with load

addresses, keep track of stride

• Separate stream buffer?

17



Stride Predictor

0x10004002: ldb r1,0x0000 0200

0000 0100 +100

Prefetch

0000 0300

...

stridelast load

18



Hardware Prefetching –
Correlation/Content-Directed Prefetching

• How to handle things like pointer chasing / linked lists?

• Correlation – records sequence of misses, then when

traversing again prefetches in that order

• Content directed – recognize pointers and pre-fetch what

they point to

19



Using 2-bit Counters

• Use 2-bit counter to see if load causing lots of misses, if

so automatically treat as streaming load (Rivers)

• Partitioned cache: cache stack, heap, etc, (or little big

huge) separately (Lee and Tyson)

20



SW Prefetch notes from paper

• When Prefetching Works, When it Doesn’t, and Why by

Lee, Kim, and Vuduc (ACM TACO 2012)

• Experiment on some SPEC CPU 2006 benchmarks, some

helped, some hurt, some same

• Times SW Prefetch works well

◦ Large number of streams (more than available tables)

◦ Short streams (takes while to train up HW prefetch)

◦ Irregular memory access

◦ Hint to bring into L1 (HW often only prefetches to

21



L3)

◦ Loop bounds, SW less likely to go off end of arrays at

end of loops

• Times SW works poorly

◦ Increases instruction count (both insns, but also a sw

prefetch might have extra calcs to construct address)

◦ Static behavior, cannot adapt to phase behavior

◦ Code changes might be needed (unrolling, etc) to give

more calculations between loads

• SW and HW might be antagonistic

◦ SW might predict all easy prefetches, leaving HW with

22



tougher ones and less to learn from

23



Cortex A9 Prefetch

• PLD – prefetch instruction

has dedicated instruction unit

• Optional hardware prefetcher. (Disabled on pandaboard)

• Can prefetch 8 data streams, detects ascending and

descending with stride of up to 8 cache lines

• Keeps prefetching as long as causing hits

• Stops if: crosses a 4kB page boundary, changes context,

24



a DSB (barrier) or a PLD instruction executes, or the

program does not hit in the prefetched lines.

• PLD requests always take precedence

25



Quick Look at Haswell Prefetch

• https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

• 4 prefetches, can independently disable

• L2 hardware prefetcher – fetch data or code into L2

• L2 adjacent cache line prefetcher – bring in 2 cache lines

(128B)

• DCU prefetcher – fetch into L1-D cache

• DCU IP prefetcher – use load history to predict what to

bring in

26

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

