ECE 571 – Advanced Microprocessor-Based Design Lecture 32

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

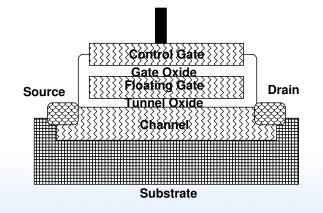
2 December 2024

Announcements

- HW#11 will be posted, GPU reading. Due next Monday.
- Will post preliminary project schedule
- Don't forget to do the course evaluation
- Bring some old disk technology to lecture

Re-writable Solid-state Storage

- Using transistors, no moving parts
- Old tech:
 - EPROM erasable programmable read-only memory (erase with UV light)
 - EEPROM electrically erasable PROM


Flash

- Invented at Toshiba in the 1980s
- NAND vs NOR
- Can erase, but in relatively large chunks
- Reading is fast (approaching RAM speeds)
- Writing is relatively slow (but still faster than magnetic hard drive)

Floating-gate transistors

- Each cell like a MOSFET, but with two gates
- Floating gate and control gate. Control to switch, float can trap electrons
- Floating gate raises the Vt by acting as a screen, so detect if 1 or 0 by putting an intermediate voltage

Charge Pumps

- Need high voltage to write. But usually this is done from single voltage supply
- 10-13V
- In space applications usually the charge pump that fails (so chips can still be read, but no longer write)

Writing Flash

- Starts as all 1s
- In general can change any 1 to 0 at any time, but if want to switch from 0 back to 1 have to erase whole block

Trapping Electrons in Gate

• Two common ways

 Fowler-Nordheim Tunneling
 Strong electric field between negative source and positive gate, draw electrons into floating gate, trapped between insulators

Hot Electron Injection High current in channel, electrons boil up into floating gate. Positive charge on gate attracts them

• Resetting (actually to all 1 state). Same process,

opposite direction, large voltage. Can in theory be individually reset bits but in practice in blocks

Removing Electrons From Gate

- Fowler-Nordheim Tunneling
- Strong negative charge on control gate toward positive charge on drain.

NOR Flash

- Faster, more expensive, slower write/erase, but can individually address bytes and can directly execute code
- Long erase
- Random access
- 100x 1000000x erase cycles
- Compact Flash (CF) was originally NOR (but NAND cheaper)
- Like a NOR gate, one end to ground
- low read latency, can be used bit-by-bit ROM

NAND Flash

- Bits are a bunch of nand gates connected serially, to read out have to read out whole row (sort of like a shift register). OK if streaming but tough if just want single bytes
- Read whole pages (4k-16k) but erase areas much larger?
- Reduced erase/write times
- Less chip area (higher density)
- 10x endurance of NOR
- Must read out in large blocks (not random access)

- Wired in series like a bunch of NAND gates
- Certain amount of errors allowed (unlike NOR)
- Tunnel injection for erasing
- ECC error correction

Bits-per-Transistor

- Vertical (3D) NAND, cells stacked vertically for more density
- SLC=single level (bit) per core
- MLC=multiple(2)
- TLC=triple level
- QLC=quad level cell
- In all cases the transistor is the same, just move values written. Harder to read/write because instead of a clear on/off amount of trapped electrons, it's in the middle.

Also wears out faster as error rate is higher making harder to distinguish as degrades.

Flash Issues

- Memory wear can only write so many times before wears out. 100k?
- Memory disturb a bit like rowhammer, write too many times can change nearby
- Xray can reset bits (problem when trying to see if BGA solder went well)
- Data retention trapped electrons steadily leak away, especially at warm temperatures

SSD

- Solid-state disk
- No moving parts
- Faster, lower-latency, more resistant to shock
- Still more expensive
- SSDs not permanent, will gradually leak and lose data after 2-3 years (faster if worn? trapped electrons leak away)
- Originally was DRAM (battery backed) but these days NAND flash

Controller manages storage

- Bad-block remapping
- Read scrubbing
- Wear leveling

SSD Performance

- DRAM-based fastest
- Single NAND relatively slow
- Having lots in parallel helps

SSD Form Factor

- Can be SATA, but SATA while fast enough for magnetic disk cannot keep up with flash
- M.2 (formerly NGFF) Intel Can provide PCIe, SATA 3.0, or USB 3, different keying to keep from plugging in wrong
- NVMe non volatile memory express hook up via PCIe
- U.2 (formerly) SSD Form Factor Working Group, provides SSD connector for enterprise. Hot-swap.
 mechanically identical to SATA-express. 3.3V or 12V

(M.2 only 3.3V)

Operating System support – Trim Operation

- On filesystem, erase file, usually just mark as deleted and blocks unused, even though never want the bytes again
- TRIM on flash lets you tell disk you don't want them anymore, and the drive can then reclaim them
- Also, when OS then re-uses freed block, flash sees this as an over-write of the block (expensive) rather than a fresh write to a new block

 Expensive because typically erases in big chunks (512kB) so over-writing you have to erase a whole big chunk, then do a write back of existing values

Hybrid Drive

- Can have Flash act as cache for traditional HDD
- Most HDDs also have DRAM cache for speed
- What happens if lose power when dirty data in DRAM cache?
- OS can send "flush" command to flush cache for safety.
 In past some manufacturers ignore this. Why? Looks better on benchmarks. What can go wrong?

SSD vs HDD comparison

- Data Durability SSD loses in a few years HDD lasts longer, but motors/mechanical might fail
- Startup HDD has to spin up, takes a while
- Random Access HDD bad, has to spin to location
- Read latency SSD better
- Bandwidth SSD often higher
- Read perf SSD fast but goes down with use
- Noise SSDs silent
- Heating both don't like high temps

- Cooling SSDs can operate at lower temps
- Air SSDs don't require air
- Price SSD cheaper
- Power –SSD usually better
- Storage size HDD usually better

SSD Quality, DRAMless

- https://utcc.utoronto.ca/~cks/space/blog/tech/SSDsUnderstandingDram
- SSDs for servers, people looking to use NVME instead (flash on the board)
- Use cheaper QLC flash
- All SSDs need to track which blocks are bad, wear leveling, etc
- Have embedded system that does this. Needs some sort of RAM to store this data
- Expensive to have on-board DRAM, can it instead off-

load this to the OS and use your system RAM?

- Host-Memory Buffer https://phisonblog.com/ host-memory-buffer-2/
- Cost reduction, remove the DRAM for space and price
- Performance problem, without fast cache of LBA (address) to block mappings have to constantly pull it off of slow flash

Compact Flash

SD-card

PCIe – history

- Older busses on IBM PC
- ISA Bus, 4.7MHz 8-bit
- 16-bit
- 32-bit a mess. VLB? EISA? IBM tried to re-take the market with PS/2+microchannel
- Intel came out with PCI, 32-bit at 33MHz, also PCI-X 64-bit (parallel bus)
- We've discussed parallel busses problematic as speeds get faster

Timing skew, layout

PCIe (PCI-express)

- Serial bus
- Sends packets (almost like network)
- Can power 25W, additional power connectors to supply can have 75W, 150W and more
- Can transfer 8GT/s (giga-transfers) a second
- PCIe x4 abous same bandwidth as PCIx (64 bits at 133MHz) 1064M/s

PCIe Lanes

- Each lane 4 wires, differential pair each direction
- Can have 1 ... 16 lanes (x1, x2, x4, x8, x16)
- In theory card negotiates this at startup, can run an x16 card in an x1 slot it will just run 16 times slower

PCIe Versions

1	2003	NRZ	8b/10b	2.5GT/s
1	2007	NRZ	8b/10b	$5.0 \mathrm{GT/s}$
1	2010	NRZ	128b/130b	8.0 GT/s
1	2017	NRZ	128b/130b	16.0GT/s
1	2019	NRZ	128b/130b	32.0GT/s
6	?	?	?	?
7	?	?	?	?

