
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 34

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 December 2024

https://web.eece.maine.edu/~vweaver

Project/HW Reminder

• Homework #11 was posted, Nvidia Blackwell B100

Reading, due Monday

• Don’t forget projects!

1

Things not mentioned last time

• Tradeoff rasterization vs ray-trace

• Rasterization really good at drawing lots of triangles

• No shadows, transparency, glass spheres, water effects

• Any games with those effects are faking them via

software

2

Modern Graphics Cards

• Essentially high-end linear algebra / 3D rendering

supercomputers

• Can draw a lot of power

• 2D (optional afterthought these days), possibly your 2d

window is just a texture drawn on two triangles

• Probably have a “compositing” window manager

• Can contain other hardware accelerators (such as Video

decoders)

• Video driver does a lot of heavy lifting, translates

3

the high-level APIs into what the underlying hardware

expects

4

Interface – Integrated vs Standalone

• Integrated

◦ Built into motherboard/chipset/processor

◦ Can share memory (and bandwidth) with CPU

◦ Traditionally less capable, but that is changing

• Standalone

◦ Usually in PCIe slot, bandwidth constrained

◦ Can draw lots of power

◦ Can have multiple

5

Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

higher frequency)

6

Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus in x86 systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150W and more

Can transfer 8GT/s (giga-transfers) a second

In general PCIe is limiting factor to getting data to GPU.

7

Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p

8

or 1920x1200 at 60Hz. TMDS differential signaling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD

9

LCD Displays (sic)

• Crystals twist in presence of electric field

• Various types, one that is out of patent is 2-(4-

alkoxyphenyl)-5-alkylpyrimidine with cyanobiphenyl

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT

• Circuitry inside to scale image and other post-processing

10

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires no

power to hold state

• Aside, does it take more energy on vs off? Black vs

white screen?

11

Other Display Tech

• LED

• OLED

• QLED (quantum dots)

• Plasma

12

Graphics Programming Interfaces

• OpenGL – SGI (Khronos)

• DirectX – Microsoft (Direct3d)

• Vulkan (sort of next gen OpenGL. Lower level, closer to

hardware)

• Metal – from Apple

• WebGL – javascript/web

• OpenGL ES – embedded subset

13

GPGPU Programming Interfaces

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

◦ CUDA – Nvidia

◦ ROCm – AMD

◦ OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

◦ OpenACC?

14

GPUs

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Display memory often broken up into tiles (improves

cache locality)

15

GPU Low-Level Software

• APIs abstract away actual hardware, more than CPUs

do

• Often you can’t really do “assembly” language, or at

least it’s sometimes no documented

◦ NVIDIA – undocumented

◦ AMD, Intel – some things documented

◦ Embedded (VideoCore, MALI) – reverse engineered?

16

GPU Cores

• Often some debate about what constitutes a GPU core

• Different companies with different terms

◦ Nvidia – SM (stream multiprocessors)

◦ AMD – CU (compute unit) or WGP (Workgroup

Processor)

◦ Inte; – EU (execution unit) or Xe core

• Also custom cores

◦ RT – ray tracing (BVH bounding volume hierarchy)

◦ Tensor cores – AI, low-precision matrix

17

Very Wide Threads

• Warp – Nvidia

• Wavefront – AMD

• Wave – DX12

• Subgroup – Vulkan

18

Example Hardware
Warp Scheduler

Reg File, 16kx32 bits

x4
...

...

Int32

x16

FP32
x16

Tensor
x2

LD/ST LD/ST LD/ST SFU

96k L1 Cache/Scratchpad

• Above based on older NVIDIA Tesla GPU

• Note register file acutually bigger than scratchpad cache

• Cache often software managed

• Latency hiding, when inevitable stall waiting for mem,

run another thread group that’s waiting

19

Low Level Code Theory

• CPU code you might do something like

f o r (x=0;x<1024; x++) {
A[x]=B[x] ∗ c+d ;

}
• On a CPU at best if no dependencies can maybe run 4

- 6 things at a time?

• On a GPU, essentially unrolls the loop and you can run

threads with maybe 1024 of these at once

• All 1024 (one for each x) load B, all multiply by c, all

20

add in d, all save out to A

• Trouble is flow control. If you have

i f (x<10) someth ing

e l s e s om e t h i n g d i f f e r e n t ;

you can’t actually branch only some of the threads,

instead all threads do both, and just the ones that aren’t

true ignore it. So potentially slower.

21

Key Ideas

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

• Avoid memory latency with calculation, not cache (which

is how CPUs do it)

22

Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

23

Why GPUs?

• Newer example:

– Cascade Lake, 1 TFLOP (64-bit floating point)

– NVIDIA 3090 36 TFLOPs

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

24

Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization
Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

25

GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit? 8? 4?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

26

GPU Challenges

• Originally optimized for 3d-graphics, not always ideal for

other things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers

27

Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

28

GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

29

Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color

30

shadertoy.com

◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows

31

GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y

32

Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

33

◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)

34

Example Shader 3.0 (DX9) capabilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

35

Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

36

– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

37

Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

38

Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

39

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

40

