
ECE574: Cluster Computing – Homework 4
Pthreads

Due: Friday 9 October 2015, 5:00pm

1. Background

• In this homework we will take the sobel code from HW#3 and parallelize it using pthreads.

2. Setup

• For this assignment, log into the same Haswell machine we used in previous homeworks. As a
reminder, use the username handed out in class and ssh in like this
ssh -p 2131 username@vincent-weaver-2.umelst.maine.edu

• Download the code template from the webpage. You can do this directly via
wget http://web.eece.maine.edu/~vweaver/classes/ece574_2015f/ece574_hw4_code.tar.gz

to avoid the hassle of copying it back and forth.

• Decompress the code
tar -xzvf ece574_hw4_code.tar.gz

• Run make to compile the code.

• You may use your own code from HW#3 as a basis for this assignment. (Alternately some really
poorly-optimized sample code is provided). To use your code just copy your sobel.c file from
HW#3 over top of the sobel_coarse.c file in the HW#4 directory.

3. Coding (7 points)
Implement simple two-thread parallelism where you run sobel_x and sobel_y in parallel, but then join
and do the combine step serially.

• Edit the file sobel_coarse.c

• Convert the code to use pthreads.

• You may need to add #include <pthread.h>

• Modify generic_convolve to be of void * type and take one void * argument. You will
have to create a struct to hold the values you want to pass in and do some casting back and
forth from the void pointer. This is some tricky C coding, so the provided sobel_coarse.c
example shows you how to do this.

• Create one thread for each convolve operation using pthread_create()

• Once both threads are running, have the main thread wait for them using pthread_join()

• Be sure to comment your code!

• Compare the results generated to make sure they match the output given by your HW#3 code.

• Run your code using
sbatch time_sobel.sh
Which will use the provided IMG_1733.JPG
Report how long it takes to run compared the the time taken by your single-threaded HW#3 code.

http://web.eece.maine.edu/~vweaver/classes/ece574_2015f/ece574_hw4_code.tar.gz


4. Instrument with PAPI (2 points)
I had some trouble getting inherited perf events to work on this code. So instead we will use a different
feature of PAPI, which is gathering timing values.

• You can comment out the code that creates the eventset and starts/stops it, we won’t be needing
that.

• With PAPI you can gather a current timestamp with microseconds granularity via
PAPI_get_real_usec().

• To measure how long a routine is, just measure the timestamp before and after, then subtract.
The value is a 64-bit one, so make sure you assign it to a value of type long long and print it
using the "%lld" option in printf().

• Have your code measure the total convolution time, the combine time, and the load_jpeg()
and store_jpeg() times and print the results to the screen.

5. Something Cool (1 point)
This is complicated and I made it worth not many points so do not waste too much time on it unless
you want to.

• Instead of doing simple 2-thread parallelism, parallelize the entire code base at a fine-grained
level.

• Copy your sobel_coarse.c file over sobel_fine.c and then modify the sobel_fine.c
file.

• A straightforward way of doing this (but not the only way) is to create 8 threads, run sobel_x
in parallel, join then create 8 threads, run sobel_y in parallel, join, then create 8 threads, run
combine in parallel, join, finish.

• You might want to start out doing the above using just 1 thread first, and the results should be
similar to your timing results for your previous sobel_fine

• Record the total time (using time) as well as the PAPI timing measurements for 1, 2, 4, and 8
threads.

6. Submitting your work.

• Be sure to edit the README to include your name, as well as the timing results, and any notes
you want to add about your something cool.

• Run make submit and it should create a file called hw04_submit.tar.gz. E-mail this
file to me.

• e-mail the file to me by the homework deadline.

2


