# ECE 574 – Cluster Computing Lecture 2

Vince Weaver

http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu

3 September 2015

# **Announcements**



# **Top500 List – June 2015**

| #  | Name       | Country      | Arch  | Proc    | Cores     | Max/Peak        | Accel    | Power  |
|----|------------|--------------|-------|---------|-----------|-----------------|----------|--------|
|    |            |              |       |         |           | TFLOPS          |          | kW     |
| 1  | Tianhe-2   | China        | x86   | IVB     | 3,120,000 | 33,862 / 54.902 | xeon-phi | 17,808 |
| 2  | Titan      | USA/ORNL     | x86   | Opteron | 560,640   | 17,590 / 27,112 | NVD K20  | 8,209  |
| 3  | Sequoia    | USA/LLNL     | Power | BG/Q    | 1,572,864 | 17,173 / 20,132 | ?        | 7,890  |
| 4  | RIKEN      | Japan        | SPARC | VIIIfx  | 705,024   | 10,510 / 11,280 | ?        | 12,660 |
| 5  | Mira       | USA/Argonne  | Power | BG/Q    | 786,432   | 8,586 / 10,066  | ?        | 3,945  |
| 6  | Piz Daint  | Switzerland  | x86   | SNB-EP  | 115,984   | 6,271 / 7,788   | NVD K20  | 2325   |
| 7  | Shaheen II | Saudi Arabia | x86   | SNB-EP  | 196,608   | 5,537 / 7,235   | ?        | 2,834  |
| 8  | Stampede   | USA/TACC     | x86   | SNB-EP  | 462,462   | 5,168 / 8,520   | XeonPhi  | 4,510  |
| 9  | Juqeen     | DE/Julich    | Power | BG/Q    | 458,752   | 5008/5872       | ?        | 2,301  |
| 10 | Vulcan     | USA/LLNL     | Power | BG/Q    | 393,216   | 4293/5033       | ?        | 1,972  |

How long does it take to run LINPACK? How much money does it cost to run LINPACK?

How much RAM? How much cooling?



- 5th time running Tianhe-2.
- Not much turnover.
- 68 systems over a petaflop
- 90 systems use some sort of accelerator
- 87% of nodes have 8 or more cores
- HP, IBM, Cray with most systems



## What goes into a top supercomputer?

- Commodity or custom
- Architecture
   x86? SPARC? Power? ARM
   embedded vs high-speed?
- Memory
- StorageHow much?



Large hadron collider one petabyte of data every day Shared? If each node wants same data, do you need to replicate it, have a network filesystem, copy it around with jobs, etc? Cluster filesystems?

Reliability. How long can it stay up without crashing?
 Can you checkpoint/restart jobs?
 Sequoia MTBF 1 day.
 Blue Waters 2 nodes failure per day.
 Titan MTBF less than 1 day



- Power / CoolingBig river nearby?
- Accelerator cards / Heterogeneous Systems
- Network
   How fast? Latency? Interconnect? (torus, cube, hypercube, etc)
   Ethernet? Infiniband? Custom?
- Operating System
   Linux? Custom? If just doing FP, do you need overhead



# of an OS? Job submission software Authentication

- Software how to program?
   Too hard to program can doom you. A lot of interest in the Cell processor. Great performance if programmed well, but hard to do.
- Tools software that can help you find performance problems



# Introduction to Performance Analysis



#### What is Performance?

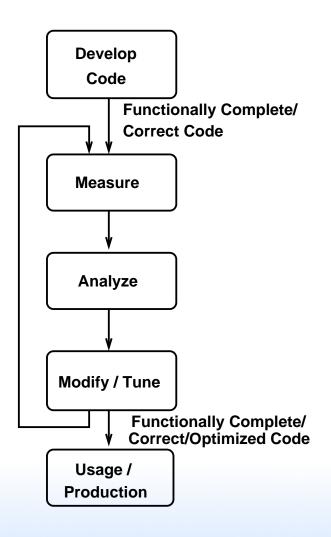
- Getting results as quickly as possible?
- Getting correct results as quickly as possible?
- What about Budget?
- What about Development Time?
- What about Hardware Usage?
- What about Power Consumption?



# **Motivation for HPC Optimization**

#### **HPC** environments are expensive:

- Procurement costs:  $\sim$ \$40 million
- Operational costs:  $\sim$ \$5 million/year
- ullet Electricity costs: 1 MW / year  $\sim$ \$1 million
- Air Conditioning costs: ??




#### **Know Your Limitation**

- CPU Constrained
- Memory Constrained (Memory Wall)
- I/O Constrained
- Thermal Constrained
- Energy Constrained

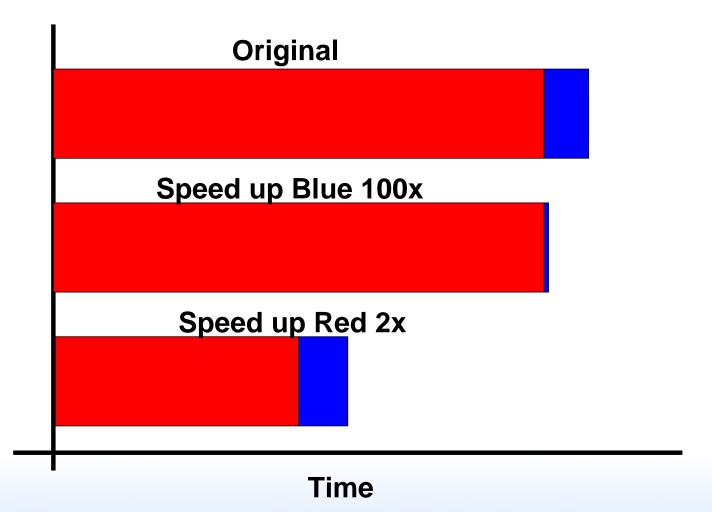


# **Performance Optimization Cycle**





#### Wisdom from Knuth


"We should forget about small efficiencies, say about 97% of the time:

#### premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified" — Donald Knuth



#### Amdahl's Law





## Speedup

• Speedup for latency  $S = \frac{t_{old}}{t_{new}}$  So old took 10s, new took 5s, speedup=2.



# **Scalability**

- How a workload behaves as more processors are added
- Strong Scaling –for fixed program size, how does adding more processors help
- Weak Scaling how does adding processors help with the same per-processor workload
- Parallel efficiency  $E_p = \frac{S_p}{p} = \frac{T_1}{pT_p}$
- Linear scaling ideal  $S_p = p$



Super-linear scaling – possible but unusual

