
ECE 574 – Cluster Computing
Lecture 3

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2015



Announcements

• None this week.

1



Speedup

• Speedup is the improvement in latency (time to run)

S = told
tnew

So if originally took 10s, new took 5s, then speedup=2.

2



Scalability

• How a workload behaves as more processors are added

• Parallel efficiency: Ep =
Sp
p = T1

pTp

• Linear scaling, ideal: Sp = p

• Super-linear scaling – possible but unusual

3



Strong vs Weak Scaling

• Strong Scaling –for fixed program size, how does adding

more processors help

• Weak Scaling – how does adding processors help with

the same per-processor workload

4



Strong Scaling

• Have a problem of a certain size, want it to get done

faster.

• Ideally with problem size N, with 2 cores it runs twice as

fast as with 1 core.

• Often processor bound; adding more processing helps,

as communication doesn’t dominate

• Hard to achieve for large number of nodes, as many

5



algorithms communication costs get larger the more

nodes involved

6



Weak Scaling

• Have a problem, want to increase problem size without

slowing down.

• Ideally with problem size N with 1 core, a problem of

size 2*n just as fast with 2 cores.

• Often memory or communication bound.

7



Scaling Example

LINPACK on Rasp-pi cluster. What kind of scaling is here?

12 4 8 16 32

Nodes

0

1000

2000

3000

4000

5000

M
F

L
O

P
S

Linear Scaling

N=5000

N=8000

N=10,000

N=19,000

N=25,000

N=35,000

8



Weak scaling. To get linear speedup need to increase

problem size.

If it were strong scaling, the individual colored lines would

increase rather than dropping off.

9



Where Performance Info Comes From

• User Level (instrumentation)

• Kernel Level (kernel metrics)

• Hardware Level (performance counters)

10



Types of Performance Info

• Aggregate counts – total counts of events that happen

• Profiles – periodic snapshots of program behavior, often

providing statistical representations of where program

hotspots are

• Traces – detailed logs of program behavior over time

11



Gathering Aggregate Counts

12



Measuring runtime – using time

$ time ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

real 0m7.360s

user 0m7.330s

sys 0m0.000s

• Real – wallclock time

• User – time the program is actually running (how

calculated)

• Sys – time spent in the kernel

13



• Must USER+SYS = REAL? Not necessarily (what if

other things using the kenrel)

• Can USER be greater than REAL? yes, if multiprocessor

• Is the time command deterministic?

No. Lots of noise in a system. Can write whole papers

on why.

• Which do you use in speedup calculations?

14



perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed

15



• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.

16



Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

17



Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

18



Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

19



time based measurements.

• Pro: available wherever gcc is.

20



Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf annotate

21



Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

22



hard to line up timestamps

23



Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

24


