ECE 574 — Cluster Computing
Lecture 3

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

8 September 2015

Announcements

e None this week.

Speedup

e Speedup is the improvement in latency (time to run)

G — told

tnew

So if originally took 10s, new took 5s, then speedup=2.

Scalability

e How a workload behaves as more processors are added

.. S T
e Parallel efficiency: £, = =2 = =L
arallel efficiency: L, . T

e Linear scaling, ideal: S, = p

e Super-linear scaling — possible but unusual

Strong vs Weak Scaling

e Strong Scaling —for fixed program size, how does adding
more processors help

e Weak Scaling — how does adding processors help with
the same per-processor workload

Strong Scaling

e Have a problem of a certain size, want it to get done
faster.

e Ideally with problem size N, with 2 cores it runs twice as
fast as with 1 core.

e Often processor bound; adding more processing helps,
as communication doesn’'t dominate

e Hard to achieve for large number of nodes, as many

-y 5

algorithms communication costs get larger the more
nodes involved

Weak Scaling

e Have a problem, want to increase problem size without
slowing down.

e Ideally with problem size N with 1 core, a problem of
size 2*n just as fast with 2 cores.

e Often memory or communication bound.

Scaling Example

LINPACK on Rasp-pi cluster. What kind of scaling is here?

] Linear Scaling
5000% —=— N=5000
] N=8000
1 —=— N=10,000
N=19,000
—a— N=25,000
N=35,000

4000

MFLOPS
&)
S
S
S
|

2000 4

10004 //’/

e
0

8 16 32
Nodes

—_—
I’\)_
I;

Weak scaling. To get linear speedup need to increase
problem size.

If it were strong scaling, the individual colored lines would
increase rather than dropping off.

Where Performance Info Comes From

e User Level (instrumentation)
e Kernel Level (kernel metrics)

e Hardware Level (performance counters)

10

Types of Performance Info

e Aggregate counts — total counts of events that happen

e Profiles — periodic snapshots of program behavior, often
oroviding statistical representations of where program
notspots are

e Traces — detailed logs of program behavior over time

/Y 11

Gathering Aggregate Counts

12

Measuring runtime — using time

$ time ./dgemm_naive 200
Will need 1280000 bytes of memory, Iterating 10 times

real Om7.360s
user Om7.330s
Sys Om0O.000s

e Real — wallclock time

e User — time the program is actually running (how
calculated)

e Sys — time spent in the kernel

-y 13

e Must USER+SYS = REAL? Not necessarily (what if
other things using the kenrel)

e Can USER be greater than REAL? yes, if multiprocessor

e |s the time command deterministic?
No. Lots of noise in a system. Can write whole papers
on why.

e Which do you use in speedup calculations?

-y 14

perf tool

$ perf stat ./dgemm_naive 200
Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) : CPUs utilize
116 context-switches : K/sec
0 cpu-migrations : K/sec
357 page-faults : K/sec
6,513,184,942 cycles . GHz
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles—backend
2,592,685,475 instructions . insns per cy
91,797,411 branches . M/sec
974,817 branch-misses . of all branc

7.299463710 seconds time elapsed

e Many options. Can select events with -e
e Use perf list to list all available events

e Hundreds of events available on x86, not quite so many
on ARM.

e Understanding the results often requires a certain
knowledge of computer architecture.

-y 16

Profiling

e Records summary information during execution
e Usually Low Overhead

e Implemented via Sampling (execution periodically
interrupted and measures what is happening) or
Measurement (extra code inserted to take readings)

-y 17

Profiling Tools

e Low Overhead — Using hardware counters, such as perf

e Small Overhead — Using static instrumentation, such as
gprof

e Large Overhead — Using dynamic binary instrumentation,
such as valgrind callgrind

-y 18

Compiler Profiling

e gprof

® 9CC -pP8g

e Adds code to each function to track time spent in each
function.

e Run program, gmon.out created. Run “gprof
executable” on it.

e Adds overhead, not necessarily fine-tuned, only does

-y 19

time based measurements.

e Pro: available wherever gcc is.

20

Perf Profiling

Automatically interrupts program and takes sample every
X Instructions.

e perf record

e perf annotate

/Y 21

Tracing

e \WWhen and where events of interest took place
e Shows when/where messages sent/received

e Records information on significant events

e Provides timestamps for events

e Trace files are typically *huge*

e \When doing multi-processor or multi-machine tracing,

-y 2

hard to line up timestamps

23

Performance Data Analysis

Manual Analysis
e Visualization, Interactive Exploration, Statistical

Analysis
e Examples: TAU, Vampir

Automatic Analysis
e Try to cope with huge amounts of data by automatic

analysis

e Examples: Paradyn, KOJAK, Scalasca, Perf-expert

-y 24

