
ECE 574 – Cluster Computing
Lecture 4

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 September 2015

Announcements

• HW#2 will be posted Friday

1

Some sample code

int x[8][8];

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

x[i][j]=0;

}

}

2

mov r0 ,0 ; i

i_loop:

mov r1 ,0 ; j

j_loop:

mov r3 ,0

mov r4 ,x

add r4 ,r4 ,r1 ,lsl#5

add r4 ,r4 ,r0 ,lsl#3

str r3 ,[r4]

add r1 ,r1 ,#1

cmp r1 ,8

blt j_loop

add r0 ,r0 ,#1

cmp r0 ,8

blt i_loop

3

Parallel Computing – Single Core

4

Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (IPC 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs

5

Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average?

IF ID EX MEM WB

6

Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

7

Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

8

Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

9

Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

10

Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

11

Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

12

The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

13

Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usuall a small (32k or so each) L1 instruction and data,

14

a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

15

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

16

Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

17

Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instrctions commit in order

• What happens on exception? (interrupt, branch

mispredict, etc)

18

• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?

19

SIMD / Vector Instructions

• SISD – single instruction, single data, your normal serial

processor

• SIMD – single instruction, multiple data – one instruction

can act on many values in parallel

• MISD – multiple instruction, single data – wavefront or

pipeline? some debate about if this really exists

• MIMD – sort of like a cluster

20

SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-ralted FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon

21

SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

22

• SSE4 : popcnt, dot product

23

AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-XMM31

24

SSE example

From Wikipedia

Doing a 4 element single-prevision vector add would

take 4 separate floating point adds:

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

With SSE you only need one add instruction:

movaps xmm0 , [v1] ;xmm0 = v1.w | v1.z | v1.y | v1.x

25

addps xmm0 , [v2] ;xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0

26

ARM NEON

• Corex A8, optional on Cortex A9

• 64 or 128bit, but some procs break 128-bit into two

operations

• 8, 16, 32-bit ints, single-precision floating point

27

SIMD Benefits

• Can be faster (2, 4, 8, 16, etc. things at once)

28

SIMD Drawbacks

• Harder to code (assembly or clever compiler)

• Puts more pressure on memory.

• More registers to save at context switch

29

