
ECE 574 – Cluster Computing
Lecture 7

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 September 2015

Homework #2 Review

xhpl 1 2 4 8 16

real 22.4 14.8 11.4 12.9 13.0

user 21.4 22.0 24.0 50.2 50.1

sys 1.0 2.0 4.4 12.3 12.9

GFLOPs 40.6 74.9 123.8 97.4 96.4

speedup 1.0 1.5 2.0 1.7 1.7

parallel 1.0 0.75 0.5 0.21 0.1

Which row do we calculate speedup from?

Why does it drop off at 8?

1

If strong scaling, then parallel efficiency would be closer to

1. Not enough results for weak scaling.

What is the worst case parallel efficiency (i.e. a single-

threaded program so adding more cores does not help?).

Is this truly the worst-case?

Perf record, make sure running it on benchmark, i.e. perf

record ./xhpl

If you run on time, or the shell script you will still get

the right results because perf by default follows all child

processes. However if you run on sbatch, it won’t work, as

sbatch quickly sets things up and notifies the scheduling

2

daemon via a socket connection to start things, then exits.

In that case perf will only measure sbatch and not your

actual benchmark run.

perf report will show a profiling breakdown at the
function level:

55.27% xhpl xhpl [.] dgemm_kernel

13.44% xhpl xhpl [.] HPL_lmul

4.38% xhpl [kernel.vmlinux] [k] __lock_acquire.isra.31

2.61% xhpl xhpl [.] HPL_dlaswp00N

2.37% xhpl xhpl [.] HPL_rand

Pressing enter or using perf annotate will show at the
asm level:

0.00 d0: prefet 0x200(%rdi)

3

1.48 prefet 0x200(%r15)

1.59 prefet 0x200(%rbp)

1.60 prefet 0x200(%rsi)

0.05 vmovup (%rdi),%ymm1

0.25 vmovup 0x20(%rdi),%ymm5

0.03 vmovup (%r15),%ymm2

The prefetcht0 results are mysterious as usually you hope

prefetches are hints and will not stall.

Let’s try using a PEBS event to eliminate skid:

cycles:pp

1.47 440ed0: prefet 0x200(%rdi)

1.63 440ed7: prefet 0x200(%r15)

1.57 440edf: prefet 0x200(%rbp)

4

0.03 440ee6: prefet 0x200(%rsi)

0.21 440eed: vmovup (%rdi),%ymm1

440ed0: 0f 18 8f 00 02 00 00 prefetcht0 0x200(%rdi)

440ed7: 41 0f 18 8f 00 02 00 prefetcht0 0x200(%r15)

440ede: 00

440edf: 0f 18 8d 00 02 00 00 prefetcht0 0x200(%rbp)

440ee6: 0f 0d 8e 00 02 00 00 prefetchw 0x200(%rsi)

440eed: c5 fc 10 0f vmovups (%rdi),%ymm1

440ef1: c5 fc 10 6f 20 vmovups 0x20(%rdi),%ymm5

prefetcht0 – fetches into all levels of cache

Even using a prime number for the sample frequency

5

didn’t help. (4481, default is 4000).

Looking at instructions:pp gives more interesting

results, but this is instruction frequency so ignores stall

latencies.

68.80% xhpl xhpl [.] dgemm_kernel

14.09% xhpl xhpl [.] HPL_lmul

3.59% xhpl xhpl [.] HPL_rand

1.74% xhpl xhpl [.] HPL_ladd

1.46% xhpl [kernel.vmlinux] [k] __lock_acquire.

0.65 44160c: vfmadd %ymm0,%ymm1,%ymm5

0.29 441611: vfmadd %ymm0,%ymm2,%ymm9

0.66 441616: vfmadd %ymm0,%ymm3,%ymm13

6

0.11 44161b: vpermp $0x1b,%ymm0,%ymm0

1.15 441621: vfmadd %ymm0,%ymm1,%ymm6

0.31 441626: vfmadd %ymm0,%ymm2,%ymm10

0.22 44162b: add $0x40,%rdi

0.65 44162f: vfmadd %ymm0,%ymm3,%ymm14

7

Pthread Programming

• based on this really good tutorial here:

https://computing.llnl.gov/tutorials/pthreads/

8

Pthread Programming

• Changes to shared system resources affect all threads in

a process (such as closing a file)

• Identical pointers point to same data

• Reading and writing to same memory is possible

simultaneously (with unknown origin) so locking must

be used

9

When can you use?

• Work on data that can be split among multiple tasks

• Work that blocks on I/O

• Work that has to handle asynchronous events

10

Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations

11

Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

12

Thread Safeness

Is a function called thread safe?

Can the code be executed multiple times simultaneously?

The main problem is if there is global state that must

be remembered between calls. For example, the strtok()

function.

As long as only local variables (on stack) usually not an

issue.

Can be addressed with locking.

13

POSIX Threads

• 1995 standard

• Various interfaces:

1. Thread management: Routines for manipulating

threads – creating, detaching, joining, etc. Also for

setting thread attributes.

2. Mutexes: (mutual exclusion) – Routines for creating

mutex locks.

3. Condition variables – allow having threads wait on a

lock

14

4. Synchronization: lock and barrier management

15

POSIX Threads (pthreads)

• A C interface. There are wrappers for Fortran.

• Over 100 functions, all starting with pthread

• Involve “opaque” data structures that are passed around.

• Include pthread.h header

• Include -pthread in linker command to compiler

16

Creating Threads

• Your function, as per normal, only includes one thread

• pthread create() creates a new thread

• You can call it anywhere, as many times as you want

• pthread create (thread,attr,start routine,arg)

• You pass is a pointer to a thread object (which is

opaque), an attr object (which can be NULL), a

17

start routine which is a C function called when it starts,

an an arg argument to pass to the routine.

• Only can pass one argument. How can you pass more?

pointer to a structure.

• With attributes you can set things like scheduling policies

• No routines for binding threads to specific cores, but

some implementations include optional non-portable way.

Also Linux has sched setaffinity routine.

18

Terminating Threads

• pthread exit()

• Returns normally from its starting routine

• another thread uses pthread cancel() in it

• The entire process is terminated (by ending, or calling

exit(), etc)

19

Thread Management

• pthread join() lets a thread block until another one

finishes

So master can join all the children and wait until they

are done before continuing.

20

Stack Management

• Manage your own stack? Can get and set size. Be

careful allocating too much on stack.

21

Mutexes

• Type of lock, only one thread can own it at a time. Can

be used to avoid race conditions.

22

Condition Variables

• A way to avoid spinning on a mutex

23

Debugging

24

