
ECE 574 – Cluster Computing
Lecture 9

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 September 2015

Announcements

• Homework #3 was posted.

Sorry for delay, Mainestreet down Friday night and most

of Saturday

1

Go Over HW#3

• Convolution, good example found in Wikipedia:

https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

• libjpeg and layout. Makes an array of size x*y*3 bytes.

The three bytes (24-bits) per pixel are r,g,b

• C arrays are complex. 3D array pixels[color][xsize][ysize]

can also (and sometimes can only) be accesses as

equivalent 1D array:

pixels[d][x][u]=pixels+((y*xsize*3)+(x*3)+d);

• sobelx, sobely, sobel

2

• There was a minor bug in the provided sample output,

was forgetting to saturate in the final step.

• Edge handling:

extend – the edge pixel is extended out

wrap – wraps around to other side of image

crop – output is smaller by 1 pixel border (alternately,

just fill it with 0s)

any of these is fine, my example crops and fills with 0s

• PAPI – last level cache misses.

How many should there be?

320x320x3bytes = 300kb.

3

in, outx, outy, out total = 300kB*4 = 1.2MB

Most likely fits in LLC (8MB on this machine, see

/proc/cpuinfo).

In theory cache misses would be 1.2MB/line size (64

bytes)

is 19200 misses in theory. Why might it be lower?

• Something cool – just make some optimization, does

not need to be successful. Compare timing and L3 Total

Cache Misses.

4

OpenMP

A good writeup is here:

https://computing.llnl.gov/tutorials/openMP/

5

OpenMP

• Shared memory multi-processing interface

• C, C++ and FORTRAN

• Industry standard made by lots of companies

• gcc support fairly recently donated, CLANG support even

more recent

• OpenMP 1.0 came out in 1997 (FORTRAN) or 1998

(C), now version 4.0 (2013)

6

• gcc added support in 4.2 (OpenMP 2.5)

4.4 (OpenMP 3.0), 4.7 (OpenMP 3.1), 4.9 (OpenMP

4.0), 5.0 (Offloading)

7

OpenMP

• Based on threads

• Master thread with Fork/Join methodology

Master thread forks off threads which compute in

parallel.

When the threads complete, then join back to the master

thread.

You can repeat many cycles of this.

• Include diagram

8

• Indicate parallelism with #pragma omp

• Can possibly have nested threads (implementation

dependent).

• Can possibly have dynamic num of threads

(implementation dependent)

• Relaxed consistency, threads can cache local variables,

so if you need memory to be consistent might need to

flush it.

9

OpenMP Interface

• Compiler Directives

• Runtime Library Routines

• Environment Variables

10

Compiler Support

• On gcc, pass -fopenmp

• C: #pragma omp

• FORTRAN: C$OMP or !$OMP

11

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

12

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

13

• Locking

• Wall clock measurements

14

Environment Variables

• Setting number of threads

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

15

• Wait policy

16

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads);

}

17

}

/* End of block , waits and joins automatically */

return 0;

}

18

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

19

parallel clause
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• private – variables in the list are private to each thread

20

• shared – variables in the list shared across threads

• default – shared or none (more on C), default scope.

none means you have to explicitly share or private each

var

• firstprivate – a variable inside a parallel section ends up

with the value it had before the parallel section

• lastprivate – a variable outside the parallel section gets

the value from the last loop iteration

• copyin – copies in the value from the master thread into

21

each thread (how is this different from firstprivate?)

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

• num threads – number of threads to use

22

How many threads?

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

23

• Threads are numbered from 0 (master thread) to N-1

24

Work-sharing Constructs

• Must be inside of a parallel directive

• do/for

• sections

• single

25

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

• schedule

static – divided into size chunk, statically assigned to

threads dynamic – divided into chunks, dynamically

26

assigned threads as they finish guided – like dynamic but

shrinking blocksize runtime – from OMP SCHEDULE

environment variable auto – compiler picks for you

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed?

27

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

28

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

29

