
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 October 2015

Announcements

• Homework #4 will be posted eventually

1

HW#4 Notes

• How granular can we be? What dependencies are there?

• How many threads should we create?

• Issues with PAPI and pthreads.

• What you need to do

Create some threads

Modify the convolve routines to take a struct argument

Easiest, start each as own thread, run two at once, join,

combine, done. Max speedup?

• Can also split things up. How hard can that be?

2

OpenMP Continued

A few good references:

https://computing.llnl.gov/tutorials/openMP/

http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_

sc.pdf http://bisqwit.iki.fi/story/howto/openmp/

3

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

4

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements

5

Environment Variables

• Setting number of threads

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy

6

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads);

}

7

}

/* End of block , waits and joins automatically */

return 0;

}

8

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

9

parallel clause
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• private – variables in the list are private to each thread

10

• shared – variables in the list shared across threads

by default all are shared except loop iterator

• default – shared or none (more on C), default scope.

none means you have to explicitly share or private each

var

• firstprivate – a variable inside a parallel section ends up

with the value it had before the parallel section

• lastprivate – a variable outside the parallel section gets

the value from the last loop iteration

11

• copyin – copies in the value from the master thread into

each thread (how is this different from firstprivate?)

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

• num threads – number of threads to use

12

How many threads?

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1

13

Work-sharing Constructs

• Must be inside of a parallel directive

• do/for

• sections

• single

14

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

• schedule

static – divided into size chunk, statically assigned to

threads dynamic – divided into chunks, dynamically

15

assigned threads as they finish guided – like dynamic but

shrinking blocksize runtime – from OMP SCHEDULE

environment variable auto – compiler picks for you

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed?

16

Work Constructs

• for

reduction

• sections

• single

• master

17

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

18

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

19

Reduction Example
for (int i=0;i <10;++i) {

a = a op expr

}

• expr is a scalar expression that does not read a

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8) num_threads(num_th$

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction */

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

20

Scheduling

• By default, splits to N size/p threads chunks statically.

• schedule (static,n) chunksize n

for example, if 10, and 100 size problem, 0-9 CPU 1,

10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPU1.

• But what if some finish faster than others?

• dynamic allocates chunks as threads become free. Can

have much higher overhead though.

21

Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i];

a[i+1]=x*b[i+1]; /* depends on next iteration of loop */

a[i]=b[i];

}

22

Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivelent, can we parallelize this?
t[i]=a[i+1]

a[i]=t[i]

23

OMP Sections

You could implement this with for() and a case

statement (gcc does it that way?)
#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

Will run the two sections in parallel at same time.

24

Synchronization

• OMP MASTER – only master executes instructions in

this block

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access

• OMP BARRIER – force all threads to wait until all are

done before continuing

25

there’s an implicit barrier at the end of for, section, and

parallel blocks. It is useful if using nowait in loops

26

Synchronization

• Locks

• omp init lock()

• omp destroy lock()

• omp set lock()

• omp unset lock()

• omp test lock()

27

Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be uptodate across threads

28

Nested Parallelism

• can have nested for loops, but by default the number of

threads comes from the outer loop so an inner parallel

for is effectively ignored

• can collapse loops if prefectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(1); can enable nesting, but then you

end up with OUTER*INNER number of threads

29

• alternately, just put the #parallel for only on the inner

loop

30

OpenMP features

• 4.0

support for accelerators (offload to GPU, etc)

SIMD support (specify simd)

better error handling

CPU affinity

task grouping

user-defined reductions

sequential consistent atomics

Fortran 2003

31

• 3.1

• 3.0

tasks

lots of other stuff

32

Pros and Cons

• Pros

– portable

– simple

– can gradually add parallelism to code; serial and parallel

statements (at least for loops) are more or less the

same.

• Cons

– Race conditions?

33

– Runs best on shared-memory systems

– Requires recent compiler

34

