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Announcements

• Homework #4 will be posted eventually
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HW#4 Notes

• How granular can we be? What dependencies are there?

• How many threads should we create?

• Issues with PAPI and pthreads.

• What you need to do

Create some threads

Modify the convolve routines to take a struct argument

Easiest, start each as own thread, run two at once, join,

combine, done. Max speedup?

• Can also split things up. How hard can that be?
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OpenMP Continued

A few good references:

https://computing.llnl.gov/tutorials/openMP/

http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_

sc.pdf http://bisqwit.iki.fi/story/howto/openmp/
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Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads
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Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements
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Environment Variables

• Setting number of threads

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy
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Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads );

}
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}

/* End of block , waits and joins automatically */

return 0;

}
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Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.
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parallel clause
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• private – variables in the list are private to each thread
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• shared – variables in the list shared across threads

by default all are shared except loop iterator

• default – shared or none (more on C), default scope.

none means you have to explicitly share or private each

var

• firstprivate – a variable inside a parallel section ends up

with the value it had before the parallel section

• lastprivate – a variable outside the parallel section gets

the value from the last loop iteration
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• copyin – copies in the value from the master thread into

each thread (how is this different from firstprivate?)

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

• num threads – number of threads to use
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How many threads?

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1
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Work-sharing Constructs

• Must be inside of a parallel directive

• do/for

• sections

• single
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Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk ])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

• schedule

static – divided into size chunk, statically assigned to

threads dynamic – divided into chunks, dynamically
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assigned threads as they finish guided – like dynamic but

shrinking blocksize runtime – from OMP SCHEDULE

environment variable auto – compiler picks for you

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed?
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Work Constructs

• for

reduction

• sections

• single

• master
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For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size );

if (memory ==NULL) perror("allocating memory");
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#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads );

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}
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Reduction Example
for (int i=0;i <10;++i) {

a = a op expr

}

• expr is a scalar expression that does not read a

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8) num_threads(num_th$

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction */

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);
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Scheduling

• By default, splits to N size/p threads chunks statically.

• schedule (static,n) chunksize n

for example, if 10, and 100 size problem, 0-9 CPU 1,

10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPU1.

• But what if some finish faster than others?

• dynamic allocates chunks as threads become free. Can

have much higher overhead though.
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Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i];

a[i+1]=x*b[i+1]; /* depends on next iteration of loop */

a[i]=b[i];

}
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Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivelent, can we parallelize this?
t[i]=a[i+1]

a[i]=t[i]

23



OMP Sections

You could implement this with for() and a case

statement (gcc does it that way?)
#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

Will run the two sections in parallel at same time.
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Synchronization

• OMP MASTER – only master executes instructions in

this block

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access

• OMP BARRIER – force all threads to wait until all are

done before continuing
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there’s an implicit barrier at the end of for, section, and

parallel blocks. It is useful if using nowait in loops
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Synchronization

• Locks

• omp init lock()

• omp destroy lock()

• omp set lock()

• omp unset lock()

• omp test lock()
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Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be uptodate across threads
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Nested Parallelism

• can have nested for loops, but by default the number of

threads comes from the outer loop so an inner parallel

for is effectively ignored

• can collapse loops if prefectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(1); can enable nesting, but then you

end up with OUTER*INNER number of threads
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• alternately, just put the #parallel for only on the inner

loop
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OpenMP features

• 4.0

support for accelerators (offload to GPU, etc)

SIMD support (specify simd)

better error handling

CPU affinity

task grouping

user-defined reductions

sequential consistent atomics

Fortran 2003
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• 3.1

• 3.0

tasks

lots of other stuff
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Pros and Cons

• Pros

– portable

– simple

– can gradually add parallelism to code; serial and parallel

statements (at least for loops) are more or less the

same.

• Cons

– Race conditions?
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– Runs best on shared-memory systems

– Requires recent compiler
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