ECE 574 — Cluster Computing
Lecture 10

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

1 October 2015



Announcements

e Homework #4 will be posted eventually



HW#4 Notes

e How granular can we be? What dependencies are there?
e How many threads should we create?
e Issues with PAPI and pthreads.
e \What you need to do
Create some threads
Modify the convolve routines to take a struct argument
Easiest, start each as own thread, run two at once, join,
combine, done. Max speedup?
e Can also split things up. How hard can that be?

-y 2



OpenMP Continued

A tew good references:

https://computing.llnl.gov/tutorials/openMP/
http://people.math.umass.edu/~johnston/PHI_WG_2014/0penMPSlides_tamu_

sc.pdf http://bisqwit.iki.fi/story/howto/openmp/



Compiler Directives

e Spawning a parallel region

e Dividing blocks of code among threads

e Distributing loop iterations between threads
e Serializing sections of code

e Synchronization of work among threads



Library routines

e Need to #include <omp.h>

e Getting and setting the number of threads
e Getting a thread’s ID

e Getting and setting threads features

e Checking in in parallel region

e Checking nested parallelism

e Locking

e Wall clock measurements



Environment Variables

e Setting number of threads

e Configuring loop iteration division
e Processor bindings

e Nested Parallelism settings

e Dynamic thread settings

e Stack size

e Wait policy



#include
#include

#include

int main

/* Fork
#pragma

a parallel region,

Simple Example

<stdio.h>
<stdlib.h>

<omp.h>
(int argc, char x*x*xargv) {

int nthreads,tid;

omp parallel private(tid)

{
tid=omp_get_thread_num() ;

printf ("\tInside of thread %d\n",tid);

if (tid==0) {
nthreads=omp_get_num_threads () ;
printf ("This is the master thread,
nthreads) ;

there are

each thread having private copy of tid x*/

%d threads\n",



}

/* End of block, waits and joins automatically x*/

return O;




Notes on the example

e PARALLEL directive creates a set of threads and leaves
the original thread the master, with tid O.

e All threads will execute the code in parallel region

e There's an implied barrier/join at end of parallel region.
Only the master continues after it.

e If any thread terminates in a parallel region, then all
threads will also terminate.

e You can't goto into a parallel region.



parallel clause

#pragma omp parallel [clause ...] mnewline
if (scalar_expression)

private (list)

shared (list)

default (shared | none)
firstprivate (list)

reduction (operator: list)
copyin (list)

num_threads (integer-expression)

structured_block

e if — you can do a check if (i==0)
If true parallel threads are created, otherwise serially

e private — variables in the list are private to each thread

-y 10



e shared — variables in the list shared across threads
by default all are shared except loop iterator

e default — shared or none (more on C), default scope.
none means you have to explicitly share or private each
var

e firstprivate — a variable inside a parallel section ends up
with the value it had before the parallel section

e |astprivate — a variable outside the parallel section gets
the value from the last loop iteration

-y 1



e copyin — copies in the value from the master thread into
each thread (how is this different from firstprivate?)

e reduction — vector dot product. The work is split up
into equal chunks, then the operator provided is used to
? and then they are all combined for final result.

e num_threads — number of threads to use

-y 12



How many threads?

e Evaluation of the IF clause

e Setting of the NUM_THREADS clause

e Use of the omp_set_num_threads() library function

e Setting of the OMP_NUM_THREADS environment variable

e Implementation default — usually the number of CPUs
on a node, though it could be dynamic (see next bullet).

e Threads are numbered from 0 (master thread) to N-1

/Y 13



Work-sharing Constructs

e Must be inside of a parallel directive
e do/for
e sections

e single

14



Do/For

#pragma omp for [clause ...] newline
schedule (type [,chunk])
ordered

private (list)
firstprivate (list)
lastprivate (list)

shared (list)

reduction (operator: list)
collapse (n)

nowait

for_loop

e schedule
static — divided into size chunk, statically assigned to
threads dynamic — divided into chunks, dynamically

-y 15



assigned threads as they finish guided — like dynamic but
shrinking blocksize runtime — from OMP_SCHEDULE
environment variable auto — compiler picks for you

e nowait — threads do not wait at end of loop

e ordered — loops must execute in order they would in
serial code

e collapse — nested loops can be collapsed?

/Y 16



o for
reduction

e sections
e single

® Mmaster

Work Constructs

17



For Example

#include <stdio.h>
#include <stdlib.h>

#include <omp.h>
static char *memory;
int main (int argc, char x*x*xargv) {
int num_threads=1;
int mem_size=256%1024%1024; /* 256 MB x*/
int i,tid,nthreads;
/* Set number of threads from the command line x*/
if (argec>1) {

num_threads=atoi (argv[1]);

}

/* allocate memory x*/
memory=malloc (mem_size);
if (memory==NULL) perror("allocating memory");

18



#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num () ;
if (tid==0) {
nthreads=omp_get_num_threads () ;
printf ("Initializing %d MB of memory using %d threads\n",
mem_size/(1024%1024) ,nthreads);

#pragma omp for schedule(static) nowait
for (i=0; i < mem_size; 1i++)
memory [i]=0xa5;

}

printf ("Master thread exiting\n");

19



Reduction Example

for (int i=0;i<10;++i) {
a = a op expr

}

e expr is a scalar expression that does not read a
e limited set of operations, +,-,*

e variables in list have to be shared

#pragma omp parallel for reduction(+:sum) schedule(static,8) num_threads (num_th$
for(i = 0; i < N; i++) {
/* Why does this need to be a reduction */
sum = sum + ixal[i];

+

printf ("sum=%11d\n",sum) ;

-y 20



Scheduling

e By default, splits to N size/p threads chunks statically.

e schedule (static,n) chunksize n
for example, if 10, and 100 size problem, 0-9 CPU 1,
10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPUL.

e But what if some finish faster than others?

e dynamic allocates chunks as threads become free. Can
have much higher overhead though.

/Y 21



Data Dependencies

Loop-carried dependencies

for(i=0;i<100;i++) {
x=alil;
ali+1]=x*b[i+1]; /* depends on next iteration of loop */
alil=b[i];

22



Shift example

for(i=0;1<1000; i++)
alil=ali+1];

Can we parallelize this?

Equivelent, can we parallelize this?

t[il=al[i+1]
alil=t[i]

23



OMP Sections

You could implement this with for() and a case
statement (gcc does it that way?)

#pragma omp parallel sections
#pragma omp section
// WORK 1

#pragma omp section
// WORK 2

Will run the two sections in parallel at same time.

-y 24



Synchronization

e OMP MASTER - only master executes instructions in
this block

e OMP CRITICAL - only one thread is allowed to execute
in this block

e OMP ATOMIC — like critical but for only one instruction,
a memory access

e OMP BARRIER - force all threads to wait until all are
done before continuing

-y 25



there's an implicit barrier at the end of for, section, and
parallel blocks. It is useful if using nowait in loops

/Y 26



Synchronization

e Locks

e omp_init_lock()

e omp_destroy_lock()
e omp_set_lock()

e omp_unset_lock()

e omp_test_lock()

27



Flush directive

e #pragma omp flush(a,b)

e Compiler might cache variables, etc, so this forces a and
b to be uptodate across threads

-y 28



Nested Parallelism

e can have nested for loops, but by default the number of
threads comes from the outer loop so an inner parallel
for is effectively ignored

e can collapse loops if prefectly nested

e perfectly nested means that all computation happens in
Inner-most loop

e omp_set_nested(1); can enable nesting, but then you
end up with OUTER*INNER number of threads

-y 29



e alternately, just put the #parallel for only on the inner
loop

/Y 30



OpenMP features

e 4.0
support for accelerators (offload to GPU, etc)
SIMD support (specify simd)
better error handling
CPU affinity
task grouping
user-defined reductions

sequential consistent atomics
Fortran 2003

31



o 3.1

e 3.0

tasks
lots of other stuff

32



Pros and Cons

e Pros

— portable

— simple

— can gradually add parallelism to code; serial and parallel
statements (at least for loops) are more or less the
same.

e Cons
— Race conditions?

/Y a3



— Runs best on shared-memory systems
— Requires recent compiler

34



