
ECE 574 – Cluster Computing
Lecture 13

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 October 2015

http://www.eece.maine.edu/~vweaver

Announcements

• Homework #3 and #4 Grades out soon

• Homework #5 will be posted soon

Like HW#4, but OpenMP instead

• Midterm on the 20th

1

Homework #4 Review

My results based on provided code:

• Single thread provided code:

1.607s real / 1.52s user

98ms load

1264ms convolve

136ms combine

81ms store

2

• Coarse grained two-thread:

1.022s real / 1.6s user (speedup=1.57 parallel

effic=78.5%)

99ms load

665ms convolve (speedup=1.9, efficiency=95%)

136ms Combine

81ms Store

• Fine grained 8-thread:

0.662s / 1.86s (speedup=2.5 parallel effic=31.25%)

99ms load

3

193ms convolve (speedup=6.5, effic=81.8%)

247ms combine (!!?)

81ms store

2-thread code
/* convolution */

convolve_data [0]. old=ℑ

convolve_data [0]. new=& sobel_x;

convolve_data [0]. filter =& sobel_x_filter;

result = pthread_create(

&threads [0],

NULL ,

generic_convolve ,

(void *)& convolve_data [0]);

/* same for y */

4

pthread_join(threads [0],NULL);

pthread_join(threads [1],NULL);

8-thread code

/* need an array of these. why? */

/* shared memory , if change start/end it changes on all copies */

struct convolve_data_t {

struct image_t *old;

struct image_t *new;

int *filter;

int ystart;

int yend;

};

Inside convolve:

for(y=ystart;y<yend;y++) {

/* Then do sobel_x 8-way , join , then sobel_y 8-way , join */

5

for(i=0;i<NUM_THREADS;i++) {

convolve_data[i].old=ℑ

convolve_data[i].new=& sobel_y;

convolve_data[i]. filter =(int *) sobel_y_filter;

convolve_data[i]. ystart =(image.y/NUM_THREADS)*i;

convolve_data[i].yend=(image.y/NUM_THREADS)*(i+1);

result = pthread_create(

&threads[i],

NULL ,

generic_convolve ,

(void *)& convolve_data[i]);

}

for(i=0;i<NUM_THREADS;i++) {

pthread_join(threads[i],NULL);

}

Did something similar for combine code, seems to have

made something worse, didn’t realize until did the PAPI

6

measurements.

How else could you improve things?

Do the combine in parallel too. Once we know a section

has X and Y sobel done we can pass off that section to

be combined (without waiting for all of X and Y to finish

first). Needs much more complicated dependency tracking

though.

Other ways to do it: Do RGB in parallel?

7

Midterm Prep

You can bring one piece of 8.5x11 paper with notes written

on it.

Topics covered:

1. Parallel Performance
Speedup/Parallel efficiency

Strong vs Weak Scaling

2. Shared Memory vs Distributed Systems

8

Tradeoffs.

Commodity Clusters

3. Parallel Hardware
Downsides of hardware multithreading,

Cache behavior (rows vs col major),

SIMD

4. Pthreads programming
Create. Join.

Race conditions

Deadlock

9

5. OpenMP programming
Some code, what does it do

for, sections

static vs dynamic scheduling

6. Brief MPI question

10

Final Project Preview

Something parallel related. Work in groups. Small writeup

and presentation last week of classes.

Possible Ideas:

• Take code of interest and attempt to parallelize it

(negative results are OK too).

• Write some parallel code in C and some other language

(Python? Matlab? Java? FORTRAN?) and compare

the performance

11

• Take some existing code and optimize it somehow. Use

perf/PAPI, etc.

• Build a small cluster and show it off

• Power/Performance tradeoffs?

• Other tasks we haven’t covered yet. GPUs. Big data.

Anything HPC/Cluster related

12

MPI continued

Some references

https://computing.llnl.gov/tutorials/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

13

https://computing.llnl.gov/tutorials/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

Writing MPI code

• #include "mpi.h"

• Over 430 routines

• use mpicc to compile

• mpirun -n 4 ./test mpi

• MPI Init() called before anything else

• MPI Finalize() at the end

14

Communicators

• You can specify communicator groups, and only send

messages to specific groups.

• MPI COMM WORLD is the default, means all processes.

15

Rank

• Rank is the process number.

• MPI Comm rank(MPI Comm comm, int size)

• You can find the number of processes:

MPI Comm size(MPI Comm comm, int size)

16

Error Handling

• MPI SUCCESS (0) is good

• By default it aborts if any sort of error

• Can override this

17

Timing

• MPI Wtime(); wallclock time in double floating point.

For PAPI-like measurements

• MPI Wtick();

18

Point to Point Operations

• Buffering – what happens if we do a send but receiving

side not ready?

• Blocking – blocking calls returns after it is safe to modify

your send buffer. Not necessarily mean it has been sent,

may just have been buffered to send. Blocking receive

means only returns when all data received

• Non-blocking – return immediately. Not safe to change

buffers until you know it is finished. Wait routines for

19

this.

• Order – messages will not overtake each other. Send #1

and #2 to same receive, #1 will be received first

• Fairness – no guarantee of fairness. Process 1 and 2

both send to same receive on 3. No guarantee which

one is received

20

MPI Send, MPI Recv

• block – MPI Send(buffer,count,type,dest,tag,comm)

• non-block – MPI Isend(buffer,count,type,dest,tag,comm,request)

• block – MPI Recv(buffer,count,type,source,tag,comm,status)

• non-block – MPI Irecv(buffer,count,type,source,tag,comm,request)

• buffer – pointer to the data buffer

• count – number of items to send

21

• type – MPI predefines a bunch. MPI CHAR, MPI INT,

MPI LONG, MPI DOUBLE, etc.

can also create own complex data types

• destination – rank to send it to

• source – rank to receive from. Also can be

MPI ANY SOURCE

• Tag – arbitrary integer uniquely identifying message.

Can pick yourself. 0-32767 guaranteed, can be higher.

• Communicator – can specify subgroups. Usually use

22

MPI COMM WORLD

• status – status of message, a struct in C

• request – on non-blocking this is a handle to the request

that can be queried later to see that status

23

Fancier blocking send/receives

• Lots, with various type of blocking and buffer attaching

and synchronous/asynchronous

24

Sample code

/* MPI Send Example */

#include <stdio.h>

#include "mpi.h"

#define ARRAYSIZE 1024*1024

int main(int argc , char **argv) {

int numtasks , rank;

int result ,i;

int A[ARRAYSIZE];

MPI_Status Stat;

int count;

result = MPI_Init (&argc ,&argv);

if (result != MPI_SUCCESS) {

printf ("Error starting MPI program !.\n");

MPI_Abort(MPI_COMM_WORLD , result);

}

MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

25

MPI_Comm_rank(MPI_COMM_WORLD ,&rank);

printf("Number of tasks= %d My rank= %d\n",

numtasks ,rank);

if (rank ==0) {

/* Initialize Array */

printf("Initializing array\n");

for(i=0;i<ARRAYSIZE;i++) {

A[i]=1;

}

for(i=1;i<numtasks;i++) {

printf("Sending %d ints to %d\n",

ARRAYSIZE ,i);

result = MPI_Send(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

i, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

}

else {

26

result = MPI_Recv(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

0, /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: Received %d ints from task %d with tag %d \n",

rank , count , Stat.MPI_SOURCE , Stat.MPI_TAG);

}

int sum=0, remote_sum =0;

for(i=rank*(ARRAYSIZE/numtasks);i<(rank +1)*(ARRAYSIZE/numtasks);i++) {

sum+=A[i];

}

if (rank ==0) {

for(i=1;i<numtasks;i++) {

result = MPI_Recv (& remote_sum , /* buffer */

1, /* count */

MPI_INT , /* type */

27

MPI_ANY_SOURCE , /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: (%d) Received %d int from task %d with tag %d \n",

rank ,remote_sum ,count , Stat.MPI_SOURCE , Stat.MPI_TAG);

sum+= remote_sum;

}

printf("Total: %d\n",sum);

}

else {

printf("\tRank %d Sending %d\n",rank ,sum);

result = MPI_Send (&sum , /* buffer */

1, /* count */

MPI_INT , /* type */

0, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

MPI_Finalize ();

28

}

29

