
ECE 574 – Cluster Computing
Lecture 15

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 October 2015

http://www.eece.maine.edu/~vweaver


Announcements

• HW#5 review

• HW#6 Will be posted

1



HW#5 Review

• Interesting corner cases

Not having proper private/shared constraints could cause

a slowdown (cache-bouncing) but not correctness issues?

• Other performance issues when not having curly brackets

around parallel section?

• Many corner cases here.

2



Notes on MPI for HW#6

3



Raspberry Pi Cluster Construction

• Imaging disks is slow. SD-card takes 40 minutes or so

to write a 4GB image.

• It’s not quite a commodity cluster as it has a fairly

complicated power distribution system (ATX power

supply to power boards to provide measured 5V to the

USB power sockets)

A bit time consuming to wire up all the cables.

• Power distribution issues

4



An ATX power supply runs best when it has a PC-like

power draw

Drawing too much 5V without a 12V low and the 5V

line droops low enough that the Pis won’t boot.

• Uses DHCP instead of hard-coding IP address in image.

Why? Allows one common disk image for all nodes.

• NFS filesystem: for MPI to work you need to have

an identical file layout (including the executable) on all

nodes. Using a cluster filesystem makes this easier.

• ganglia: provides cluster stats via web-browser. Having

5



a huge issue trying to get it working.

6



GPGPU

7



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

8



• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

9



Interfaces

• OpenGL – SGI

• DirectX – Microsoft

• For consumer grade, driven by gaming

10



GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

11



Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

12



Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

13



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

14



• highly parallel

15



GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

16



• lot of off-chip memory transfers

17


