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Announcements

• HW#5 review

• HW#6 Will be posted
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HW#5 Review

• Interesting corner cases

Not having proper private/shared constraints could cause

a slowdown (cache-bouncing) but not correctness issues?

• Other performance issues when not having curly brackets

around parallel section?

• Many corner cases here.
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Notes on MPI for HW#6
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Raspberry Pi Cluster Construction

• Imaging disks is slow. SD-card takes 40 minutes or so

to write a 4GB image.

• It’s not quite a commodity cluster as it has a fairly

complicated power distribution system (ATX power

supply to power boards to provide measured 5V to the

USB power sockets)

A bit time consuming to wire up all the cables.

• Power distribution issues
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An ATX power supply runs best when it has a PC-like

power draw

Drawing too much 5V without a 12V low and the 5V

line droops low enough that the Pis won’t boot.

• Uses DHCP instead of hard-coding IP address in image.

Why? Allows one common disk image for all nodes.

• NFS filesystem: for MPI to work you need to have

an identical file layout (including the executable) on all

nodes. Using a cluster filesystem makes this easier.

• ganglia: provides cluster stats via web-browser. Having
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a huge issue trying to get it working.
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GPGPU
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GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)
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• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing
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Interfaces

• OpenGL – SGI

• DirectX – Microsoft

• For consumer grade, driven by gaming
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GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc
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Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS
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Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls
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GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.
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• highly parallel
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GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow
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• lot of off-chip memory transfers
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