
ECE 574 – Cluster Computing
Lecture 16

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

29 October 2015

http://www.eece.maine.edu/~vweaver


Announcements

• HW#6 Will be posted still

Delayed by cluster work

1



HW#5 Review Continued

• Took a look at fine-grained with and without “sum”

marked as shared using perf. cache-misses not much

different. Big difference in “LLC-stores”: fast case =

61M, slow case = 661M

2



GPGPU Key Ideas

• Using many slimmed down cores

• Have single instruction stream operate across many cores

(SIMD)

• A void latency (slow textures, etc) by working on another

group when one stalls

3



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

4



• highly parallel

5



GPU Problems

• Optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• Serial code with a lot of control flow runs poorly

• Off-chip memory transfers can be slow

6



Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

7



Older / Traditional GPU Pipeline

• In old days, fixed pipeline.

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

8



Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

9



• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

10



GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

11



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

12



Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now

13



Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

14



• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)

15



Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

16



GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?

17



Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

18



– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

19



Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

20



Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

21



Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

22



CUDA Programming

• Since 2007

• Use nvcc to compile

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

23



• global parameters to function – means pass to

CUDA compiler

• cudaMalloc() to allocate memory and pointers that can

be passed in

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• cudaFree() at the end

• Can get block number with blockIdx.x and thread index

24



with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

25



Code Example

#include <stdio.h>

#define N 10

__global__ void add (int *a, int *b, int *c) {

int tid=blockIdx.x;

if (tid <N) {

c[tid]=a[tid]+b[tid];

}

}

int main(int arc , char **argv) {

int a[N],b[N],c[N];

int *dev_a ,*dev_b ,* dev_c;

int i;

/* Allocate memory on GPU */

26



cudaMalloc ((void **)& dev_a ,N*sizeof(int));

cudaMalloc ((void **)& dev_b ,N*sizeof(int));

cudaMalloc ((void **)& dev_c ,N*sizeof(int));

/* Fill the host arrays with values */

for(i=0;i<N;i++) {

a[i]=-i;

b[i]=i*i;

}

cudaMemcpy(dev_a ,a,N*sizeof(int),cudaMemcpyHostToDevice );

cudaMemcpy(dev_b ,b,N*sizeof(int),cudaMemcpyHostToDevice );

add <<<N,1>>>(dev_a ,dev_b ,dev_c);

cudaMemcpy(c,dev_c ,N*sizeof(int),cudaMemcpyDeviceToHost );

/* results */

for(i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);

}

cudaFree(dev_a );

cudaFree(dev_b );

27



cudaFree(dev_c );

return 0;

}

28



OpenCL

similar to Cuda at least conceptually

29



Other Accelerator Options

• XeonPhi – came out of the larabee design (effort to do a

GPU powered by x86 chips). Large array of x86 chips(p5

class on older models, atom on newer) on PCIe card.

Sort of like a plug-in mini cluster. Runs Linux, can ssh

into the boards over PCIe. Benefit: can use existing x86

programming tools and knowledge.

• FPGA – can have FPGA accelerator. Only worthwhile

if you don’t plan to reprogram it much as time delay in

reprogramming. Also requires special compiler support

30



(OpenMP?)

• ASIC – can have hard-coded custom hardware for

acceleration. Expensive. Found in BitCoin mining?

• DSPs – can be used as accelerators

31


