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Announcements

• HW#6 Will be posted still

Delayed by cluster work
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HW#5 Review Continued

• Took a look at fine-grained with and without “sum”

marked as shared using perf. cache-misses not much

different. Big difference in “LLC-stores”: fast case =

61M, slow case = 661M
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GPGPU Key Ideas

• Using many slimmed down cores

• Have single instruction stream operate across many cores

(SIMD)

• A void latency (slow textures, etc) by working on another

group when one stalls
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GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.
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• highly parallel
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GPU Problems

• Optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• Serial code with a lot of control flow runs poorly

• Off-chip memory transfers can be slow
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Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one
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Older / Traditional GPU Pipeline

• In old days, fixed pipeline.

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.
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Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias
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• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)
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GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment
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Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

12



Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now
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Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations
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• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)
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Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)
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GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?
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Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays
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– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range
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Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution
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Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started
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Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.
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CUDA Programming

• Since 2007

• Use nvcc to compile

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler
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• global parameters to function – means pass to

CUDA compiler

• cudaMalloc() to allocate memory and pointers that can

be passed in

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• cudaFree() at the end

• Can get block number with blockIdx.x and thread index
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with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing
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Code Example

#include <stdio.h>

#define N 10

__global__ void add (int *a, int *b, int *c) {

int tid=blockIdx.x;

if (tid <N) {

c[tid]=a[tid]+b[tid];

}

}

int main(int arc , char **argv) {

int a[N],b[N],c[N];

int *dev_a ,*dev_b ,* dev_c;

int i;

/* Allocate memory on GPU */
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cudaMalloc ((void **)& dev_a ,N*sizeof(int));

cudaMalloc ((void **)& dev_b ,N*sizeof(int));

cudaMalloc ((void **)& dev_c ,N*sizeof(int));

/* Fill the host arrays with values */

for(i=0;i<N;i++) {

a[i]=-i;

b[i]=i*i;

}

cudaMemcpy(dev_a ,a,N*sizeof(int),cudaMemcpyHostToDevice );

cudaMemcpy(dev_b ,b,N*sizeof(int),cudaMemcpyHostToDevice );

add <<<N,1>>>(dev_a ,dev_b ,dev_c);

cudaMemcpy(c,dev_c ,N*sizeof(int),cudaMemcpyDeviceToHost );

/* results */

for(i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);

}

cudaFree(dev_a );

cudaFree(dev_b );
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cudaFree(dev_c );

return 0;

}
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OpenCL

similar to Cuda at least conceptually
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Other Accelerator Options

• XeonPhi – came out of the larabee design (effort to do a

GPU powered by x86 chips). Large array of x86 chips(p5

class on older models, atom on newer) on PCIe card.

Sort of like a plug-in mini cluster. Runs Linux, can ssh

into the boards over PCIe. Benefit: can use existing x86

programming tools and knowledge.

• FPGA – can have FPGA accelerator. Only worthwhile

if you don’t plan to reprogram it much as time delay in

reprogramming. Also requires special compiler support
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(OpenMP?)

• ASIC – can have hard-coded custom hardware for

acceleration. Expensive. Found in BitCoin mining?

• DSPs – can be used as accelerators
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