
ECE 574 – Cluster Computing
Lecture 18

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 November 2015

http://www.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted

• Don’t forget project topics

1



Hadoop and Map Reduce

2



Map Reduce

• Originally popularized by Google, but not really used by

them anymore

Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:

Simplified Data Processing on Large Clusters, Google.

• For processing large data sets in parallel on a cluster

• Similar to MPI reduce and scatter operations

• Map() – filters and sorts data into key/value pairs

3



Stateless, can run in parallel

can contain Combiner() – combines duplicates?

• Reduce() – the various worker nodes process each group

in parallel.

Shuffle() – redistribute data so all common data on same

node

• Can do with single processor systems, but not any faster

typically. Shines on parallel systems

4



Map Reduce Example

The quick brown fox jumped over the lazy dog.

MAP split by key (in this case, number of letters)

3: [the, fox, the, dog]

4: [over, lazy]

5: [quick, brown]

6: [jumped]

REDUCE each thread/node gets one of these. Reduce

might simply count.

5



3: 4

4: 2

5: 2

6: 1

6



Map Reduce Hello World

This is the example they like to use.

Map: key is the word

To be or not to be, that is the question.

to: [1, 1]

be: [1, 1]

or: [1]

not: [1]

that: [1]

is: [1]

7



the: [1]

question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1

that: 1

is: 1

the: 1

question: 1

8



Hadoop

• Apache

• Distributed Processing and Distributed Storage on

commodity clusters

• Java based

• Data spread throughout nodes

Large data sets split up and spread throughout the

cluster

9



• Unlike traditional HPC clusters, code sent *to the nodes*

that have data of interest, rather than taking data over

network to running code.

• HADOOP common – libraries

• HADOOP YARN – thread scheduling

• Hadoop Distributed File System – HDFS

• Hadoop MapReduce – processing algorithm

• Originally developed at Yahoo by Cutting and Cafarella.

10



Named after toy elephant.

• Many users. As of 2012 Facebook had 100PB of data,

said it grew at 0.5PB/day

11



Scheduling

• Each location of system known. Try to run code on

same system as data for locality, If not possible, run on

one nearby.

• Small cluster has single master node, and multiple worker

nodes.

12



Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

• Keeps working in face of hardware failures

• Streaming data access – optimize for bandwidth, not

latency

Relaxes some POSIX assumptions

• Large data sizes – optimized for files of gigabytes to

terrabytes

13

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


• Write-once-read-many – assumption is the data isn’t

being actively written.

• “Moving computation easier than moving data”

• blocksize and replication factor per-file

• Rack-aware filesystem

• ”location awareness” Tries to spread code out multiple

copies distributed physically

• Data spread throughout nodes. Default replication value

14



of 3, duplicated three times, twice on same rack and

once on different

• Namenode plus cluster of datanodes

• Namenode tracks filenames and locations, keeps entire

map in memory

• Datanode stores data. Uses local computer’s underlying

filesystem. Just blocks of data, makes directories as

appropriate but doesn’t necessarily have any relationship

to the files as seen from within HDFS.

15



• Communication is over TCP

16



HDFS Fault Handling

• Datanodes send heartbeats to namenode. When

datanodes go missing, marked as dead, no new I/O

sent to them. If any files fall below replication level they

can be replicated on remaining nodes

• Rebalancing – if disk availability changes files might be

moved around

• Integrity – checksums on files to detect corruption

• Namenode is a single point of failure. Keeps the edit log

17



and fsimage, only syncs at startup

18



Data Organization

• Data broken up into chunks, default 64MB

• Creating a file does not necessarily allocate a chunk; it is

cached locally and only sent out once enough data has

accumulated to fill a block

• Replication pipeline: once file created starts being sent

in smaller chunks (4kb) and it gets forwarded 1 to 2 to

3 in a pipeline until file in all places.

• Deleting a file does not delete right away, moved to

19



/trash After configurable time gets deleted from trash

and the blocks are marked as free. It can take a while

for this to all happen, deletes do not free up space

immediately.

20


