
ECE 574 – Cluster Computing
Lecture 18

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 November 2015

http://www.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted

• Don’t forget project topics
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Hadoop and Map Reduce
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Map Reduce

• Originally popularized by Google, but not really used by

them anymore

Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:

Simplified Data Processing on Large Clusters, Google.

• For processing large data sets in parallel on a cluster

• Similar to MPI reduce and scatter operations

• Map() – filters and sorts data into key/value pairs
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Stateless, can run in parallel

can contain Combiner() – combines duplicates?

• Reduce() – the various worker nodes process each group

in parallel.

Shuffle() – redistribute data so all common data on same

node

• Can do with single processor systems, but not any faster

typically. Shines on parallel systems
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Map Reduce Example

The quick brown fox jumped over the lazy dog.

MAP split by key (in this case, number of letters)

3: [the, fox, the, dog]

4: [over, lazy]

5: [quick, brown]

6: [jumped]

REDUCE each thread/node gets one of these. Reduce

might simply count.
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3: 4

4: 2

5: 2

6: 1
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Map Reduce Hello World

This is the example they like to use.

Map: key is the word

To be or not to be, that is the question.

to: [1, 1]

be: [1, 1]

or: [1]

not: [1]

that: [1]

is: [1]
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the: [1]

question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1

that: 1

is: 1

the: 1

question: 1
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Hadoop

• Apache

• Distributed Processing and Distributed Storage on

commodity clusters

• Java based

• Data spread throughout nodes

Large data sets split up and spread throughout the

cluster
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• Unlike traditional HPC clusters, code sent *to the nodes*

that have data of interest, rather than taking data over

network to running code.

• HADOOP common – libraries

• HADOOP YARN – thread scheduling

• Hadoop Distributed File System – HDFS

• Hadoop MapReduce – processing algorithm

• Originally developed at Yahoo by Cutting and Cafarella.
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Named after toy elephant.

• Many users. As of 2012 Facebook had 100PB of data,

said it grew at 0.5PB/day
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Scheduling

• Each location of system known. Try to run code on

same system as data for locality, If not possible, run on

one nearby.

• Small cluster has single master node, and multiple worker

nodes.
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Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

• Keeps working in face of hardware failures

• Streaming data access – optimize for bandwidth, not

latency

Relaxes some POSIX assumptions

• Large data sizes – optimized for files of gigabytes to

terrabytes
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• Write-once-read-many – assumption is the data isn’t

being actively written.

• “Moving computation easier than moving data”

• blocksize and replication factor per-file

• Rack-aware filesystem

• ”location awareness” Tries to spread code out multiple

copies distributed physically

• Data spread throughout nodes. Default replication value
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of 3, duplicated three times, twice on same rack and

once on different

• Namenode plus cluster of datanodes

• Namenode tracks filenames and locations, keeps entire

map in memory

• Datanode stores data. Uses local computer’s underlying

filesystem. Just blocks of data, makes directories as

appropriate but doesn’t necessarily have any relationship

to the files as seen from within HDFS.
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• Communication is over TCP
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HDFS Fault Handling

• Datanodes send heartbeats to namenode. When

datanodes go missing, marked as dead, no new I/O

sent to them. If any files fall below replication level they

can be replicated on remaining nodes

• Rebalancing – if disk availability changes files might be

moved around

• Integrity – checksums on files to detect corruption

• Namenode is a single point of failure. Keeps the edit log
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and fsimage, only syncs at startup
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Data Organization

• Data broken up into chunks, default 64MB

• Creating a file does not necessarily allocate a chunk; it is

cached locally and only sent out once enough data has

accumulated to fill a block

• Replication pipeline: once file created starts being sent

in smaller chunks (4kb) and it gets forwarded 1 to 2 to

3 in a pipeline until file in all places.

• Deleting a file does not delete right away, moved to
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/trash After configurable time gets deleted from trash

and the blocks are marked as free. It can take a while

for this to all happen, deletes do not free up space

immediately.
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