
ECE 574 – Cluster Computing
Lecture 20

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 November 2015

http://www.eece.maine.edu/~vweaver


Announcements

• Projects

• Thanksgiving question

• Supercomputing

1



Announcements

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32

2



nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)

3



Architectural Vulnerability factor

• Some bit flips matter less

• (branch predictor) others more (caches) some even more

(PC)

• Parts of memory that have dead code, unused values

4



Failure and Error Rates

• Cassini, flight recorders, each with 2.5GB RAM

Single bit error rate of 280 errors/day

• Google SIGMETRICS 2009 paper

25-70k errors per billion hours per megabit

5 single bit errors in 8GB per hour

• ASCI White when came out, MTBF 5hrs, got it to 55hrs

• Sequoia MTBF around 1 day, Blue Waters: 2 per day,

5



Titan MTGF: less than a day

• 20% of computation is recovering from failures (big

energy waste)

• Most of failures do not take down more than one node

Jaguar/Titan 92% crashes single-node crashes

6



Testing

• Single event upset characterization of the Pentium MMX

and Pentium II microprocessors using proton irradiation,

IEEE Transactions on Nuclear Science, 1999.

• Pentium II, took off-shelf chip and irradiated it with

proton. Only CPU, rest shielded with lead. Irradiate

from bottom to avoid heatsink

• Various errors, freeze to blue screen. no power glitches

or ”latchup 85% hangs, 14% cache errors no ALU or

7



FPU errors detected.

8



Things you can do Software

9



Byzantine Failure

• Byzantine General Problem, Lamport et al

Generals surround a city. Want to all attack or all

retreat; doing it part way will fail.

Might be traitorous generals with complex things (split

their vote, if 5R 4A, tell the 5A and 4R).

Unreliable messengers.

10



N-version software

• Implement same code many different ways, vote on

result. Need a tight spec to make sure results will all

match.

11



Algorithm Based

• Parity checks, CRC

• Spread out work so that if one gives wrong result it can

be checked. Overlap work.

• Add some extra values to calculation that can be

checked, can tell if something went wrong

12



Control Flow Checking

• Knows where code should be allowed to jump to

• If you jump somewhere impossible, checker stops things

13



Checking Data Structures

• Extra state in data structure or checksum so can tell if

it gets corrupted.

14



Application Level Checkpointing

• Checkpoint your program state periodically.

• If a failure takes down a program or hardware node, you

can restore to last checkpoint rather than starting from

scratch.

• Two kinds – manual (you save out your state manually

and have to write code to restart from arbitrary point)

• Automatic – kernel stores everything possible about your

state and can restart a program from a snapshot.

15



Difficulty? All program state, network connections, RAM

contents, disk state, open files, etc. Hard (I’ve written

one). Some support in Linux kernel, need lots of patches

as some syscalls are write-only.

• Checkpoints have high overhead. Have to stop while

taking them? Write GB to disk?

• Multilevel checkpoint – big checkpoint occasionally and

smaller subcheckpoints

16



Crash Only Software

• Crash-only software – crashing and restarting can take

less time than clean reboot.

• So why write code to cleanly shutdown? Instead write

your code so it can handle crashes cleanly. That way

your cleanup code is tested every exit, rather than rarely

on a crash.

17



Approximate Computing

• Approximate Computing – some algorithms don’t

necessarily need the “right” value

• Video rendering, voice recognition, web search, robotics,

GPS, image processing

18


