
ECE 574 – Cluster Computing
Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 March 2017

http://web.eece.maine.edu/~vweaver

Announcements

• HW#5 Finally Graded

Had right idea, but often result not an *exact* match.

Often due to edge conditions.

Does that matter? Approximate computing?

• HW#6 also Finally graded

◦ Comment your code! Even if it’s just a few new lines,

say what it is supposed to be doing. Parallelism is

never trivial.

◦ Have to put “parallel” either in separate directive, or

1

in sections.

◦ Also time measurement outside parallel area (time in

each section is the same with or without threads, the

difference is they can happen simultaneously). i.e. be

sure to measure wall clock, not user, time

◦ Don’t nest parallel! remove sections stuff for fine.

◦ Also, does it makes sense to parallelize the most inner

loop of 3?

◦ Also what if you mark variables private that shouldn’t

be? scope!

◦ Also if have sum marked private in inner loop, need

2

to make sure it somehow gets added on the outer

(reduction).

◦ Be careful with bracket placement. Don’t need one for

a for, for example.

◦ Also, remember as soon as you do parallel everything

in the brackets runs on X threads. So if you parallel,

have loops, then a for... those outer loops are each

running X times so you’re calculating everything X

times over. This isn’t a race condition because we

don’t modify the inputs so it doesn’t matter how many

times we calc each output.

3

• HW#7 (MPI) will be assigned after midterm

• Short Midterm Thursday

• Project Ideas due 30 March (next Thursday)

• Spent most of break trying to make PAPI faster. Turned

up a lot of Linux kernel bugs. One involved pthreads,

fun. Trying to get a paper out of it.

• Cluster/Infiniband digression. Managed to get the

haswell/broadwell cluster connected by Infiniband over

IP (20GB/s!) but can’t get OpenMPI to use the

connection.

4

Midterm Review

• Can bring one page (8.5” by 11”) of notes. Otherwise

closed notes, computers, cell-phones, Beowulf cluster,

etc.

• Performance

◦ Speedup, Parallel efficiency

◦ Strong and Weak scaling

• Definition of Distributed vs Shared Memory

• Know why changing order of loops can make things

faster

5

• Pthread Programming

◦ Know about race condition, deadlock

◦ Know roughly the layout of a pthreads program.

(define pthread t thread structures, pthread create,

pthread join)

◦ Know why you’d use a mutex.

• OpenMP Programming

◦ parallel directive

◦ scope

◦ section

◦ for directive

6

MPI continued

Some references

https://computing.llnl.gov/tutorials/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

7

https://computing.llnl.gov/tutorials/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default

Writing MPI code

• #include "mpi.h"

• Over 430 routines

• use mpicc to compile

gcc or other compiler underneath, just sets up includes

and libraries for you.

• mpirun -n 4 ./test mpi

• MPI Init() called before anything else

• MPI Finalize() at the end

• Error handling – most errors just abort

8

Communicators

• You can specify communicator groups, and only send

messages to specific groups.

• MPI COMM WORLD is the default, means all processes.

9

Rank

• Rank is the process number.

• MPI Comm rank(MPI Comm comm, int size)

MPI Comm rank(MPI COMM WORLD, &rank);

• You can find the number of processes:

MPI Comm size(MPI Comm comm, int size)

10

Error Handling

• MPI SUCCESS (0) is good

• By default it aborts if any sort of error

• Can override this

11

Timing

• MPI Wtime(); wallclock time in double floating point.

For PAPI-like measurements

• MPI Wtick();

12

Point to Point Operations

• Buffering – what happens if we do a send but receiving

side not ready?

• Blocking – blocking calls returns after it is safe to modify

your send buffer. Not necessarily mean it has been sent,

may just have been buffered to send. Blocking receive

means only returns when all data received

• Non-blocking – return immediately. Not safe to change

buffers until you know it is finished. Wait routines for

13

this.

• Order – messages will not overtake each other. Send #1

and #2 to same receive, #1 will be received first

• Fairness – no guarantee of fairness. Process 1 and 2

both send to same receive on 3. No guarantee which

one is received

14

MPI Send, MPI Recv

• block – MPI Send(buffer,count,type,dest,tag,comm)

• non-block – MPI Isend(buffer,count,type,dest,tag,comm,request)

• block – MPI Recv(buffer,count,type,source,tag,comm,status)

• non-block – MPI Irecv(buffer,count,type,source,tag,comm,request)

• buffer – pointer to the data buffer

• count – number of items to send

15

• type – MPI predefines a bunch. MPI CHAR, MPI INT,

MPI LONG, MPI DOUBLE, etc.

can also create own complex data types

• destination – rank to send it to

• source – rank to receive from. Also can be

MPI ANY SOURCE

• Tag – arbitrary integer uniquely identifying message.

Can pick yourself. 0-32767 guaranteed, can be higher.

• Communicator – can specify subgroups. Usually use

16

MPI COMM WORLD

• status – status of message, a struct in C

• request – on non-blocking this is a handle to the request

that can be queried later to see that status

17

Fancier blocking send/receives

• Lots, with various type of blocking and buffer attaching

and synchronous/asynchronous

18

Efficient way of getting data to all processes

• master send to each individual, take a while

• some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• use broadcast instead

19

Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others

20

MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)

21

MPI Bcast()

• MPI Bcast (&buffer,count,datatype,root,comm)

• Sends data from the root process to each other process.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

22

MPI Scatter() / MPI Gather()

• MPI Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

• Copies sencnt sized chunks of sendbuf to each processes

recvbuf

• MPI Gather (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcount,recvtype,root,comm)

• Have to take care if area sending not a multiple of your

number of ranks

23

MPI Reduce()

• MPI Reduce(void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, int

root, MPI Comm communicator)

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR

24

◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom

25

MPI Allgather()

Gathers, to all.

Equivalent of gathering back to root, then

rebroadcasting to all.

26

MPI Allreduce()

• Like an MPI Reduce followed by an MPI Bcast

• MPI Allreduce(void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, MPI Comm

communicator)

• Once the reduction is done, broadcasts the results to all

processes

27

MPI Reduce scatter()

28

MPI Alltoall()

Scatter data from all to all

29

MPI Scatterv()

Vector scatter. Send non-contiguous chunks. In addition

to regular scatter parameters, a list of start offsets and

lengths.

30

MPI Scan()

Lets you do partial reductions.

31

Custom Data Types

You can create custom data types that aren’t the MPI

default, sort of like structures.

Open question: can you just cast your data into integers

and uncast on the other side?

32

Groups vs Communicators

Can create custom groups if you don’t want to broadcast

to all.

33

Virtual Topologies

• Map to a geometric shape (grid or graph)

• Doesn’t have to match underlying hardware

34

Examples

See the provided tar file with example code.

35

Running MPI code

• mpiexec -n 4 ./test mpi

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.

36

Send Example

• mpi send.c

• Run with mpirun -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a

37

lot of work manually.

38

Blocking vs NonBlock Example?

TODO

39

Wtime Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value

40

Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives

41

Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value

42

Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.

43

Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

it’s rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)

44

Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.

45

