
ECE 574 – Cluster Computing
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 March 2017

http://web.eece.maine.edu/~vweaver

Announcements

• HW#7 (MPI) posted.

• Project topics due.

• Update on the PAPI paper

1

Raspberry Pi Cluster Construction

• Imaging disks is slow. SD-card takes 40 minutes or so

to write a 4GB image.

• It’s not quite a commodity cluster as it has a fairly

complicated power distribution system (ATX power

supply to power boards to provide measured 5V to the

USB power sockets)

A bit time consuming to wire up all the cables.

• Power distribution issues

2

An ATX power supply runs best when it has a PC-like

power draw

Drawing too much 5V without a 12V low and the 5V

line droops low enough that the Pis won’t boot.

• Uses DHCP instead of hard-coding IP address in image.

Why? Allows one common disk image for all nodes.

• NFS filesystem: for MPI to work you need to have

an identical file layout (including the executable) on all

nodes. Using a cluster filesystem makes this easier.

• ganglia: provides cluster stats via web-browser. Having

3

a huge issue trying to get it working.

4

Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

5

GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?

6

Program

• Typically textures read-only. Some can render to texture,

only way GPU can share RAM w/o going through CPU.

In general data not written back until entire chunk is

done. Fragment processor can read memory as often as

it wants, but not write back until done.

• Only handle fixed-point or floating point values

• Analogies:

– Textures == arrays

7

– Kernels == inner loops

– Render-to-texture == feedback

– Geometry-rasterization == computation. Usually done

as a simple grid (quadrilateral)

– Texture-coordinates = Domain

– Vertex-coordinates = Range

8

Flow Control, Branches

• only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

9

Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

10

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

11

CUDA Programming

• Since 2007

• Use nvcc to compile

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

12

• global parameters to function – means pass to

CUDA compiler

• cudaMalloc() to allocate memory and pointers that can

be passed in

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• cudaFree() at the end

• Can get block number with blockIdx.x and thread index

13

with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

14

CUDA Programming

• See the NVIDIA “CUDA C Programming Guide”

• Compute Unified Device Architecture

• From CUDA C Programming guide from NVIDIA

• CUDA introduced in 2006

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

15

• CUDA C extends C, define C functions ”kernels” that

are executed N times in parallel by N CUDA threads

16

CUDA Coding

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

17

code that can launch the GPU code

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Only subset of C/C++ supported in the device code

18

CUDA Hardware

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads that execute

independently from each other.

• Manages/Schedules/Executes threads in groups of 32

parallel threads (warps) (weaving terminology) (no

relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

19

each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

20

CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly
__global__ void VecAdd(float *A, float *B, float *C) {

int i = threadIdx.x;

C[i]=A[i]+B[i];

}

int main(int argc , char **argv) {

....

/* Invoke N threads */

VecAdd <<<1,N>>>(A,B,C);

21

}

• threadIdx is 3-component vector, can be seen as 1, 2 or

3 dimensional block of threads (thread block)

• Much like our sobel code, can look as 1D (just x), 2D,

(thread iD is ((y*xsize)+x) or (z*xsize*ysize)+y*xsize+x

• Weird syntax for doing 2 or 3d.

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i=threadIdx.x;

int j=threadIdx.y;

C[i][j]=A[i][j]+B[i][j];

}

int numBlocks =1;

dim3 threadsPerBlock(N,N);

MatAdd <<<numBlocks , threadsPerBlock >>>(A,B,C);

22

• Each block made up of the threads. Can have multiple

levels of blocks too, can get block number with blockIdx

• Thread blocks operate independently, in any order. That

way can be scheduled across arbitrary number of cores

(depends how fancy your GPU is)

23

CUDA Memory

• Per-thread private local memory

• Shared memory visible to whole block (lifetime of block)

• Global memory

• also constant and texture spaces. Have special rules.

Texture can do some filtering and stuff

• Global, constant, and texture persistent across kernel

launches by same app.

24

More Coding

• No explicit initialization, done automatically first time

you do something (keep in mind if timing)

• Global Memory: linear or arrays.

◦ Arrays are textures

◦ Linear arrays are allocated with cudaMalloc(),

cudaFree()

◦ To transfer use cudaMemcpy()

◦ Also can be allocated cudaMallocPitch() cudaMalloc3D()

for allignmen reasons

25

◦ Access by symbol (?)

• Shared memory, shared . Faster than Global also

device

Manually break your problem into smaller sizes

26

Misc

• Can lock host memory with cudaHostAlloc(). Pinned,

can’t be paged out. Can load store while kernel running

if case. Only so much available. Can be marked

writecombining. Not cached. So slow for host to read

(should only write) but speeds up PCI transaction.

27

Async Concurrent Execution

• Instead of serial/parallel/serial/parallel model

• Want to have CUDA running and host at same time, or

with mem transfers at same time

◦ Concurrent host/device: calls are async and return to

host before device done

◦ Concurrent kernel execution: newer devices can run

multiple kernels at once. Problem if use lots of memory

◦ Overlap of Data Transfer and Kernel execution

◦ Streams: sequence of commands that execute in order,

28

but can be interleaved with other streams

complicated way to set them up. Synchronization and

callbacks

29

Events

• Can create performance events to monitor timing

• PAPI can read out performance counters on some boards

• Often it’s for a full synchronous stream, can’t get values

mid-operation

• NVML can measure power and temp on some boards?

30

Multi-device system

• Can switch between active device

• More advanced systems can access each others device

memory

31

Other features

• Unified virtual address space (64 bit machines)

• Interprocess communication

• Error checking

32

Texture Memory

• Complex

33

3D Interop

• Can make results go to an OpenGL or Direct3D buffer

• Can then use CUDA results in your graphics program

34

Code Example

#include <stdio.h>

#define N 10

__global__ void add (int *a, int *b, int *c) {

int tid=blockIdx.x;

if (tid <N) {

c[tid]=a[tid]+b[tid];

}

}

int main(int arc , char **argv) {

int a[N],b[N],c[N];

int *dev_a ,*dev_b ,* dev_c;

int i;

/* Allocate memory on GPU */

35

cudaMalloc ((void **)& dev_a ,N*sizeof(int));

cudaMalloc ((void **)& dev_b ,N*sizeof(int));

cudaMalloc ((void **)& dev_c ,N*sizeof(int));

/* Fill the host arrays with values */

for(i=0;i<N;i++) {

a[i]=-i;

b[i]=i*i;

}

cudaMemcpy(dev_a ,a,N*sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(dev_b ,b,N*sizeof(int),cudaMemcpyHostToDevice);

add <<<N,1>>>(dev_a ,dev_b ,dev_c);

cudaMemcpy(c,dev_c ,N*sizeof(int),cudaMemcpyDeviceToHost);

/* results */

for(i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);

}

cudaFree(dev_a);

cudaFree(dev_b);

36

cudaFree(dev_c);

return 0;

}

37

