
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 February 2019



Announcements

• HW#5 will be posted

• Sorry about the delay on HW#4 grading

Be careful, test all inputs

butterfinger and earth, x and y same size

space station is not.

1



Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i]; /* no dependency (though careful if x is global) */

a[i]=b[i]; /* probably no dependency but on C can alias */

a[i]=a[i+1]; /* depends on next iteration of loop */

}

2



Shift example

for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivalent, can we parallelize this?
for(i=0;i <1000;i++)

t[i]=a[i+1]

for(i=0;i <1000;i++)

a[i]=t[i]

More overhead, but can be done in parallel

3



Reductions

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

so reduction(+:a) will add up all threads as to final value

4



Reduction Example

for (int i=0;i <10;++i) {

a = a op expr

}

• expr is a scalar expression that does not read a

• limited set of operations, +,-,*

• variables in list have to be shared

5



#pragma omp parallel for reduction (+:sum) schedule(static ,8) num_threads(num_th$

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction?*/

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

6



OMP Sections

You could implement this with for() and a case

statement (gcc does it that way?)

#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

Will run the two sections in parallel at same time.

7



Synchronization

• OMP MASTER – only master executes instructions in

this block

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access faster

• OMP BARRIER – force all threads to wait until all are

done before continuing

8



there’s an implicit barrier at the end of for, section, and

parallel blocks. It is useful if using nowait in loops

9



Synchronization

• Critical sections pragma omp critical (name)

• Barriers

• Locks

• omp init lock()

• omp destroy lock()

• omp set lock()

10



• omp unset lock()

• omp test lock()

11



Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be uptodate across threads

12



Other Notes

can call functions, functions outside of directives can

still have openMP directive sin them (orphan directives)

13



Nested Parallelism

• can have nested for loops, but by default the number of

threads comes from the outer loop so an inner parallel

for is effectively ignored

• can collapse loops if prefectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(1); can enable nesting, but then you

end up with OUTER*INNER number of threads

14



• alternately, just put the #parallel for only on the inner

loop

15



OpenMP features

• 4.0

support for accelerators (offload to GPU, etc)

SIMD support (specify simd)

better error handling

CPU affinity

task grouping

user-defined reductions

sequential consistent atomics

Fortran 2003

16



• 3.1

• 3.0

tasks

lots of other stuff

17



Pros and Cons

• Pros

– portable

– simple

– can gradually add parallelism to code; serial and parallel

statements (at least for loops) are more or less the

same.

• Cons

– Race conditions?

18



– Runs best on shared-memory systems

– Requires recent compiler

19



OpenMP Examples

See the course website for a link to a tarball with all the

examples.

20



Simple

openmp simple.c just creates a parallel region and

prints thread number. By default, how many threasd are

set up on the Haswell-EP machine?

21



Scope

TODO: private/shared variable example

22



for

openmp for.c

• Parallelizes the memory init loop.

• Thread number set from command line and the

num threads() directive.

• What happens to performance as you add threads?

23



static schedule

openmp static schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices at compile time.

• In example, thread 0 is fastest and 4 the slowest.

• You can see thread 0 runs through its assignment fast

and then sits around doing nothing while the rest slowly

finish.

24



dynamic schedule

openmp dynamic schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices dynamically.

• Each thread starts with one, but zero runs all the rest

because it is so fast.

25



Changing Chunksize

openmp dynamic chunk.c

• Creates 100 threads with a prime chunksize.

• Threads are assigned same amount of time to run.

• Spread mostly evenly but the last set of chunks, only

two threads get assigned while the others have nothing

to do.

• Switch to “guided” and the chunksize decreases over

time and the ending is a bit more balanced.

26



critical

openmp critical.c

• Has a parallel loop, but a shared global counter inside.

• What happens without a critical section? (race

condition)

• Put in the critical section get right results.

• But slow!

• No need to manually add mutexes, OpenMP abstracts

that away.

27



section

openmp section.c

• For parallelism when you don’t have a loop

• Have multiple functions that have no dependencies, want

to run at same time?

• No matter how many threads you have, only can run up

to the maximum number of sections at a time.

28



reduction

openmp reduction.c

• What if you calculate something in each loop iteration,

but want to sum them all in the end? Something like a

vector dot product?

• You could put it in a for loop, sum = sum+ i ∗ a[i] but

race condition on shared sum.

• Could put in critical section but that’s slow as we saw.

• Instead can use special reduction directive.

29



simd reduction

openmp simd reduction.c

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

• simd directive

• Supported by recent GCC (5.0 and later)

• Tries to map your code into SSE/AVX vector instructions

if available on your processor.

• Our example turns out runs *slower*. Possibly our input

set is not big enough.

• Can look at assembly code to verify it is making SIMD

30



code:

objdump --disassemble-all openmp simd reduction

• Also you can use gcc -S to generate assembly.

31



offload

Can offload to GPU or MIC.

https://gcc.gnu.org/wiki/Offloading

Need separate compiler for component. Support really

isn’t there yet.

32


