
ECE 574 – Cluster Computing
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 March 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#7 will be posted.

• HW#6 almost graded

1



Hand Back Midterms

• Average was a 94

2



Further HW#6 review

• Fix warnings!

• More code comments too

• Remember, we want from 1 to y-1, not 0 to y

That is tricky when subtracting off

• If you create a temp buffer, that’s fine, but might want

to zero-it-out before reusing it or else the edges might

have old data in them.

• sizeof operator... what is sizeof(image.pixels)

• Calculating the tail-ends of things and copying it in place

3



• If you get a staggered/shifted effect. Should probably

gather in multiples of xsize, otherwise it will be shifted.

Gather in the same size as your ysize limits.

• I’ll attach my changes when I send out grades

4



Things you can do Software

5



Algorithm Based

• Parity checks, CRC

• Spread out work so that if one gives wrong result it can

be checked. Overlap work.

• Add some extra values to calculation that can be

checked, can tell if something went wrong

6



Control Flow Checking

• Knows where code should be allowed to jump to

• If you jump somewhere impossible, checker stops things

7



Checking Data Structures

Extra state in data structure or checksum so can tell if

it gets corrupted.

8



Memory Failures

• Memory Errors in Modern Systems

ASPLOS 2015

• Battling Borked Bits

IEEE Spectrum December 2015

9



Architectural Vulnerability factor

• Some bit flips matter less

• (branch predictor) others more (caches) some even more

(PC)

• Parts of memory that have dead code, unused values

10



Failure and Error Rates

• Cassini, flight recorders, each with 2.5GB RAM

Single bit error rate of 280 errors/day

• Google SIGMETRICS 2009 paper

25-70k errors per billion hours per megabit

5 single bit errors in 8GB per hour

• ASCI White when came out, MTBF 5hrs, got it to 55hrs

• Sequoia MTBF around 1 day, Blue Waters: 2 per day,

11



Titan MTGF: less than a day

• 20% of computation is recovering from failures (big

energy waste)

• Most of failures do not take down more than one node

Jaguar/Titan 92% crashes single-node crashes

12



Things you can do Software

13



Byzantine Failure

• Byzantine General Problem, Lamport et al

Generals surround a city. Want to all attack or all

retreat; doing it part way will fail.

Might be traitorous generals with complex things (split

their vote, if 5R 4A, tell the 5A and 4R).

Unreliable messengers.

14



N-version software

• Implement same code many different ways, vote on

result. Need a tight spec to make sure results will all

match.

15



Algorithm Based

• Parity checks, CRC

• Spread out work so that if one gives wrong result it can

be checked. Overlap work.

• Add some extra values to calculation that can be

checked, can tell if something went wrong

16



Control Flow Checking

• Knows where code should be allowed to jump to

• If you jump somewhere impossible, checker stops things

17



Checking Data Structures

• Extra state in data structure or checksum so can tell if

it gets corrupted.

18



Application Level Checkpointing

• Checkpoint your program state periodically.

• If a failure takes down a program or hardware node, you

can restore to last checkpoint rather than starting from

scratch.

• Two kinds – manual (you save out your state manually

and have to write code to restart from arbitrary point)

• Automatic – kernel stores everything possible about your

state and can restart a program from a snapshot.

19



Difficulty? All program state, network connections, RAM

contents, disk state, open files, etc. Hard (I’ve written

one). Some support in Linux kernel, need lots of patches

as some syscalls are write-only.

• Checkpoints have high overhead. Have to stop while

taking them? Write GB to disk?

• Multilevel checkpoint – big checkpoint occasionally and

smaller subcheckpoints

20



Crash Only Software

• Crash-only software – crashing and restarting can take

less time than clean reboot.

• So why write code to cleanly shutdown? Instead write

your code so it can handle crashes cleanly. That way

your cleanup code is tested every exit, rather than rarely

on a crash.

21



Approximate Computing

• Approximate Computing – some algorithms don’t

necessarily need the “right” value

• Video rendering, voice recognition, web search, robotics,

GPS, image processing

22


