
ECE 574 – Cluster Computing
Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 March 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#7 posted

• HW#6 and HW#5 returned

• Don’t forget project topics due Thursday!

Topics: memory/reliability on Pi? Launch in a balloon?

Topics: GPU on Pi (OpenCL)
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Notes on HW#5

• Were supposed to use sections directive for the coarse

code

• Should parallelize your biggest loop, unless it is auto-

collapsing, parallizing the colors loop of 0..3 won’t scale

very well

This is why some were seeing bigger benefits of combine

vs convolve

• Loop indices don’t need to be marked as private,
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OpenMP assumes they are (so don’t change their value

outside the for statement)
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Notes on MPI

• So many issues were C related. Fortran next time?

• Got MPI working on haswell-ep with mpich, needed to

set MpiDefault=pmi2 in slurm.conf
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Notes on HW#6

• Biggest problem was calculating at different granularity

to the gather

• Other problem was the final tail end of data to calculate

in cases where not exact multiple of number or ranks.
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Pi cluster

• 1 head node (16GB SD card), 24 sub-nodes. One

currently seems to be down (reliability!)

• Read up on the cluster here:

https://www.mdpi.com/2079-9292/5/4/61/htm

• Added your accounts, same password as haswell-ep (via

hashes)

• Try not to use up too much disk space

• Also note the SD card is sorta slow, which with the

network affects scaling a bit.
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• Use slurm

• The batch scripts I gave you have a timeout of 5 minutes

per job. Last time some people’s code went crazy and

ran forever and other people’s jobs never ran

• Use sinfo or squeue to see cluster and job stats

• Use scancel to cancel a job

• If things going poorly, contact me

• Did update PAPI on all nodes which should be working
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MPI and slurm

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32
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nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)
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Why use slurm?

• Can set account to charge

• Can handle checkpointing

• Can set constraints (run on machine with gpu, certain

proc type)

• Contiguous allocations

• CPU freq, power capping

• Licenses avail (things like Matlab etc)

• Memory avail
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Graphics Processing Units

• Retrospective on old graphics hardware

• Framebuffer is simple (though annoying pointer match

like in sobel or worse). VGA Mode 13h, 0xa0000, 64kB

• Old video game systems didn’t even have that. Why?

1MB for a framebuffer was expensive. Only 64k RAM

total.

• Atari 2600 only had 128B of RAM, total. 40-bit

framebuffer. Racing the beam.

• Also could do sprites or tile based.
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GPUs
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Interfaces

• Originally each vendor had own 3D interface, SGI

standardized

• OpenGL – SGI

• Direct3D – Microsoft

• Vulkan – new interface with less baggage

• WebGL?

• Originally for HPC/CAD but gaming has brought down

prices for everyone.
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GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc
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Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS
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GPGPU Key Ideas

• Using many slimmed down cores

• Have single instruction stream operate across many cores

(SIMD)

• Avoid latency (slow textures, etc) by working on another

group when one stalls
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GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel
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GPU Problems

• Optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• Serial code with a lot of control flow runs poorly

• Off-chip memory transfers can be slow
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Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one
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Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.
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Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias
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• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility
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GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment
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Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write
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Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now
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Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations
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• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)
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Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)
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