
ECE 574 – Cluster Computing
Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 March 2019

http://web.eece.maine.edu/~vweaver


Announcements

• HW#7 posted

• HW#6 and HW#5 returned

• Don’t forget project topics due Thursday!

Topics: memory/reliability on Pi? Launch in a balloon?

Topics: GPU on Pi (OpenCL)

1



Notes on HW#5

• Were supposed to use sections directive for the coarse

code

• Should parallelize your biggest loop, unless it is auto-

collapsing, parallizing the colors loop of 0..3 won’t scale

very well

This is why some were seeing bigger benefits of combine

vs convolve

• Loop indices don’t need to be marked as private,

2



OpenMP assumes they are (so don’t change their value

outside the for statement)

3



Notes on MPI

• So many issues were C related. Fortran next time?

• Got MPI working on haswell-ep with mpich, needed to

set MpiDefault=pmi2 in slurm.conf

4



Notes on HW#6

• Biggest problem was calculating at different granularity

to the gather

• Other problem was the final tail end of data to calculate

in cases where not exact multiple of number or ranks.

5



Pi cluster

• 1 head node (16GB SD card), 24 sub-nodes. One

currently seems to be down (reliability!)

• Read up on the cluster here:

https://www.mdpi.com/2079-9292/5/4/61/htm

• Added your accounts, same password as haswell-ep (via

hashes)

• Try not to use up too much disk space

• Also note the SD card is sorta slow, which with the

network affects scaling a bit.

6

https://www.mdpi.com/2079-9292/5/4/61/htm


• Use slurm

• The batch scripts I gave you have a timeout of 5 minutes

per job. Last time some people’s code went crazy and

ran forever and other people’s jobs never ran

• Use sinfo or squeue to see cluster and job stats

• Use scancel to cancel a job

• If things going poorly, contact me

• Did update PAPI on all nodes which should be working

7



MPI and slurm

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32

8



nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)

9



Why use slurm?

• Can set account to charge

• Can handle checkpointing

• Can set constraints (run on machine with gpu, certain

proc type)

• Contiguous allocations

• CPU freq, power capping

• Licenses avail (things like Matlab etc)

• Memory avail

10



Graphics Processing Units

• Retrospective on old graphics hardware

• Framebuffer is simple (though annoying pointer match

like in sobel or worse). VGA Mode 13h, 0xa0000, 64kB

• Old video game systems didn’t even have that. Why?

1MB for a framebuffer was expensive. Only 64k RAM

total.

• Atari 2600 only had 128B of RAM, total. 40-bit

framebuffer. Racing the beam.

• Also could do sprites or tile based.

11



GPUs

12



Interfaces

• Originally each vendor had own 3D interface, SGI

standardized

• OpenGL – SGI

• Direct3D – Microsoft

• Vulkan – new interface with less baggage

• WebGL?

• Originally for HPC/CAD but gaming has brought down

prices for everyone.

13



GPGPUS

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

14



Why GPUs?

• Old example:

– 3GHz Pentium 4, 6 GFLOPS, 6GB/sec peak

– GeForceFX 6800: 53GFLOPS, 34GB/sec peak

• Newer example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

15



GPGPU Key Ideas

• Using many slimmed down cores

• Have single instruction stream operate across many cores

(SIMD)

• Avoid latency (slow textures, etc) by working on another

group when one stalls

16



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

17



GPU Problems

• Optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• Serial code with a lot of control flow runs poorly

• Off-chip memory transfers can be slow

18



Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

19



Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

20



Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

21



• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

22



GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

23



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

24



Example for Shader 3.0, came out DirectX9

They are up to Pixel Shader 5.0 now

25



Shader 3.0 Programming – Vertex
Processor

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

26



• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

– EXP, EXPP, LIT, LOGP (exponential)

– RCP, RSQ (reciprocal, r-square-root)

– SIN, COS (trig)

27



Shader 3.0 Programming – Fragment
Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

28


