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Announcements

• HW#10 will be posted

• Don’t forget project topics next week
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Google TPU

• Tensor Processing Unit

• Accelerates machine learning tasks

• ISCA paper – In Datacenter Performance Analysis of a

Tensor Processing Unit

2



Big data in news

• https://www.computerworld.com/article/2972251/

massive-telescope-array-aims-for-black-hole-gets-gusher-of-data.

html

• Black hole “picture”

• From radio-wave interferometry

• Telescopes scattered all over world, including Antarctica

• Hard drives fail on mountain tops! (not enough air) use
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helium-filled ones instead

• Over 5 days, each telescope collected 900TB of data

• 1000-2000 hard drives, about 9PB

• How data sent? Hard-drives shipped to Massachusetts

• Had to wait for spring in Antarctica to ship out those

• 800 core cluster to analyze
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Databases

• Machines that store large amounts of data, often

optimized for fast retrieval

• Databases

• Relational databases: store rows of data, with a key.

Each field has attribute.

Item, Name, Price, Color, Rating

• SQL (structured query language)
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SELECT *

FROM Book

WHERE price > 100.00

ORDER BY title;

• Consistency?

• NoSQL?

• Can have parallel and distributed databases too. It’s

more difficult with SQL

– Replication – task runs, making sure all the various
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copies are kept in sync

– Duplication – there is a master, and all the others are

copies of the master. Users may only change master

• Main memory database – machines with 100TB of RAM?
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Big Data

• A buzzword?

• How big is big?

• Terabytes?

• Too big for one machine?

• In general if fits in RAM (< 8GB) or fits on disk

(< 10TB) you are better off just using a database or

similar
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• Once it won’t fit on one machine, and you want to use

a cluster, things get complicated.

• Key idea is to move computation to the data, rather

than vice-versa
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Big Data Tools

• There are various

• Hadoop is one of the more popular
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Hadoop

• A distributed filesystem (HDFS)

• A way to run map-reduce jobs
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Hadoop

• Apache

• Distributed Processing and Distributed Storage on

commodity clusters

• Java based

• Data spread throughout nodes

Large data sets split up and spread throughout the

cluster
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• Unlike traditional HPC clusters, code sent *to the nodes*

that have data of interest, rather than taking data over

network to running code.

• HADOOP common – libraries

• HADOOP YARN – thread scheduling

• Hadoop Distributed File System – HDFS

• Hadoop MapReduce – processing algorithm

• Originally developed at Yahoo by Cutting and Cafarella.
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Named after toy elephant.

• Many users. As of 2012 Facebook had 100PB of data,

said it grew at 0.5PB/day
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Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

• Keeps working in face of hardware failures

• Streaming data access – optimize for bandwidth, not

latency

Relaxes some POSIX assumptions

• Large data sizes – optimized for files of gigabytes to

terabytes
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• Write-once-read-many – assumption is the data isn’t

being actively written.

• “Moving computation easier than moving data”

• blocksize and replication factor per-file

• Rack-aware filesystem

• “location awareness” Tries to spread code out multiple

copies distributed physically

• Data spread throughout nodes. Default replication value
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of 3, duplicated three times, twice on same rack and

once on different

• Namenode plus cluster of datanodes

• Namenode tracks filenames and locations, keeps entire

map in memory

• Datanode stores data. Uses local computer’s underlying

filesystem. Just blocks of data, makes directories as

appropriate but doesn’t necessarily have any relationship

to the files as seen from within HDFS.
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• Communication is over TCP
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HDFS Fault Handling

• Datanodes send heartbeats to namenode. When

datanodes go missing, marked as dead, no new I/O

sent to them. If any files fall below replication level they

can be replicated on remaining nodes

• Rebalancing – if disk availability changes files might be

moved around

• Integrity – checksums on files to detect corruption

• Namenode is a single point of failure. Keeps the edit log
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and fsimage, only syncs at startup
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Data Organization

• Data broken up into chunks, default 64MB

• Creating a file does not necessarily allocate a chunk; it is

cached locally and only sent out once enough data has

accumulated to fill a block

• Replication pipeline: once file created starts being sent

in smaller chunks (4kb) and it gets forwarded 1 to 2 to

3 in a pipeline until file in all places.

• Deleting a file does not delete right away, moved to
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/trash After configurable time gets deleted from trash

and the blocks are marked as free. It can take a while

for this to all happen, deletes do not free up space

immediately.

• Not a full POSIX filesystem. Writes are slow, and you

can’t write to an existing file.
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Map Reduce

• Originally popularized by Google, but not really used by

them anymore (after 2014)

Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:

Simplified Data Processing on Large Clusters, Google.

• For processing large data sets in parallel on a cluster

• Similar to MPI reduce and scatter operations

• Map() – filters and sorts data into key/value pairs
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Stateless, can run in parallel

can contain Combiner() – combines duplicates?

• Reduce() – the various worker nodes process each group

in parallel.

Shuffle() – redistribute data so all common data on same

node

• Can do with single processor systems, but not any faster

typically. Shines on parallel systems
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Map Reduce Example

The quick brown fox jumped over the lazy dog.

MAP split by key (in this case, number of letters)

3: [the, fox, the, dog]

4: [over, lazy]

5: [quick, brown]

6: [jumped]

REDUCE each thread/node gets one of these. Reduce

might simply count.
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3: 4

4: 2

5: 2

6: 1
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Map Reduce Hello World

This is the example they like to use.

Map: key is the word

To be or not to be, that is the question.

to: [1, 1]

be: [1, 1]

or: [1]

not: [1]

that: [1]

is: [1]
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the: [1]

question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1

that: 1

is: 1

the: 1

question: 1
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Real world friends example

• http://stevekrenzel.com/finding-friends-with-mapreduce

• https://www.tutorialspoint.com/hadoop/hadoop_

mapreduce.htm
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Submitting a Job

• Job:

Specify input and output on filesystem

The jar file (java class) of the map and reduce functions

Job configuration

• Hadoop client sends this to the scheduler
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Scheduling

• Each location of system known. Try to run code on

same system as data for locality, If not possible, run on

one nearby.

• Small cluster has single master node, and multiple worker

nodes.

• Hardware does not have to be fault tolerant; if a

map/reduce fails it is simply retried again (on another

machine)
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• You can add/remove hardware at any time
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Hadoop Update

Can set up Hadoop on single machine, even the name and

data servers. Just download big chunk of Java, have Java

and ssh installed.
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Other Big Data codebases

• Apache Spark

• Apache Storm

• Google BigQuery
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