
ECE574: Cluster Computing – Homework 4
POSIX Threads (pthreads)

Due: Friday 26 February 2021, 5:00pm

1. Background

• In this homework we will take the sobel code from HW#3 and parallelize it using pthreads.

• A good tutorial on pthreads can be found here:
https://computing.llnl.gov/tutorials/pthreads/

2. Setup

• For this assignment, log into the same Haswell-EP machine we used in previous homeworks. As
a reminder, use the username handed out in class and ssh in like this
ssh -p 2131 username@weaver-lab.eece.maine.edu

• Download the code template from the webpage. You can do this directly via
wget http://web.eece.maine.edu/~vweaver/classes/ece574_2021s/ece574_hw4_code.tar.gz

to avoid the hassle of copying it back and forth.

• Decompress the code
tar -xzvf ece574_hw4_code.tar.gz

• Run make to compile the code.

• You may use your own code from HW#3 as a basis for this assignment. (If you had trouble with
HW#3, I provide some simple and poorly-optimized sample code you can use instead). If you
wish to use your own code, just copy your sobel.c file from HW#3 over top of the provided
sobel_coarse.c file in the HW#4 directory.

3. Coarse-grained Parallel Code (6 points)
Implement simple two-thread parallelism where you run sobel_x and sobel_y in parallel, but then join
and do the combine step serially.

• Edit the file sobel_coarse.c

• Convert the code to use pthreads.

• You may need to add #include <pthread.h>

• Modify generic_convolve to be of void * type and take one void * argument. You will
have to create a struct to hold the values you want to pass in and do some casting back and
forth from the void pointer. This is some tricky C coding, so the provided sobel_coarse.c
example shows you how to do this.

• Create one thread for each convolve operation using pthread_create()

• Once both threads are running, have the main thread wait for them using pthread_join()

• Be sure to comment your code!

• Compare the results generated to make sure they match the output given by your HW#3 code.

https://computing.llnl.gov/tutorials/pthreads/
http://web.eece.maine.edu/~vweaver/classes/ece574_2021s/ece574_hw4_code.tar.gz


• Report results gathered on haswell-ep: run your code using
sbatch time_sobel.sh
Which will use the provided space_station_hires.jpg
Report how long it takes to run compared to the time taken by your single-threaded HW#3 code.

4. Instrument with PAPI (1 point)
Ideally PAPI should run just fine on multi-threaded code, but it sometimes can have some issues. So
for this homework we will use a different feature of PAPI, which is using it to gather time results rather
than performance counter results.

• If using your own code from HW#3, you can comment out the code that creates the eventset and
starts/stops it, we won’t be needing that.

• With PAPI you can gather a current timestamp with microsecond granularity via
PAPI_get_real_usec().

• To measure how long a routine is, just measure the timestamp before and after, then subtract.
The value is a 64-bit one, so make sure you assign it to a value of type long long and print it
using the "%lld" option in printf().

• Have your code measure and print the following times:

(a) Total Convolution time (from just before you start the convolution to after both sobelx and
sobely finish)

(b) Combine time (from before the combine starts to after it finished)
(c) JPEG Load Time
(d) JPEG Store Time

5. Fine-grained Parallelism (2 points)
Getting more parallelism out of our code is possible, but is a bit more difficult. In this part we will
attempt to parallelize the convolution code internally. Note: this can be complicated to get fully
working.

• Instead of doing simple 2-thread parallelism, parallelize the entire code base at a fine-grained
level.

• Copy your sobel_coarse.c file over sobel_fine.c and then modify sobel_fine.c

• Split up each operation into N number of parts, where N is configurable.

– If you want, you can just make this a #define in your code and statically allocate all of the
thread info. Doing this will require you to change and recompile your code if you vary the
thread value.

– Alternatively, you can get the thread number from a command line argument and dynami-
cally allocate everything (something like ./sobel_fine IMAGE.jpg threads)

– Each element of the sobel operation is independent, so you can split up the input image into
arbitrary sizes (say 8 for this example).

– Create 8 threads, run sobel_x in parallel (each on 1/8th), join when done.
– You will need to modify your convolve() function to take start/stop parameters, and only

operate on the values from start to stop.

2



– Also be sure to run sobel_y in parallel, and also modify combine() in a similar way.

• If your image is not an integer multiple of N you will need to have fixup code at the end to make
sure the edges get processed properly.

• Record the total time (using time) as well as the PAPI timing measurements for 1, 2, 4, and 8
threads in the README file.

6. Question (1 pt)
Put the answer to the following question in the README file.

(a) You are running multi-threaded pthread code, and you have the following two functions that can
be called by multiple threads at a time. To protect the critical sections, mutexes are used.

Can anything go wrong with this code? If so, describe a path through the code that can trigger a
failure. What is this type of failure called?
void function_one(void) {

pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);
/* critical section */
pthread_mutex_unlock(&mutex2);
pthread_mutex_unlock(&mutex1);

}

void function_two(void) {
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);
/* critical section */
pthread_mutex_unlock(&mutex1);
pthread_mutex_unlock(&mutex2);

}

7. Submitting your work.

• Be sure to edit the README to include your name, as well as the timing results, and any notes
you want to add about your something cool.

• Run make submit and it should create a file called hw04_submit.tar.gz. E-mail this
file to me.

• e-mail the file to me by the homework deadline.

3


