ECES574: Cluster Computing — Homework 5
OpenMP

Due: Friday S March 2021, 5:00pm

1. Background

In this homework we will take the sobel code from Homeworks #3 and #4 and parallelize it using
OpenMP.

A helpful OpenMP tutorial can be found here:
https://computing.llnl.gov/tutorials/openMP/

2. Setup

For this assignment, log into the same Haswell-EP machine we used in previous homeworks. As
a reminder, use the username handed out in class and ssh in like this

ssh —-p 2131 usernamelweaver-lab.eece.maine.edu

Download the code template from the webpage. You can do this directly via
wget http://web.eece.maine.edu/~vweaver/classes/ece574/ece574_hw5_code.tar.qgz

to avoid the hassle of copying it back and forth.

Decompress the code
tar —-xzvf eceb74_hwb_code.tar.gz

Run make to compile the code.

You may use your own code from a previous assignment as a basis for this assignment. (Alter-
nately some really poorly-optimized sample code is provided). It might make more sense to reuse
your HW#3 code or the HW#4 coarse code as a basis rather than having to back out any optimiza-
tions from your HW#4 fine code. Just copy your un-parallelized code over sobel_before.c,
sobel_coarse.cand sobel_fine.c.

3. Coarse-grained Parallelism (4 points)

Implement simple two-thread OpenMP parallelism where you run sobel_x and sobel_y in parallel, but
it joins before doing the combine step serially.

To do this, use the OpenMP Sections directives. Remember that OpenMP will automatically do a join
at the end of a parallel section.

Edit the file sobel_coarse.c

Convert the code to use OpenMP.

You may need to add #include <omp.h>

Be sure to comment your code!

Compare the results generated to make sure they match the output given by previous homeworks.

Run your code using

sbatch time_coarse.sh

which will use the provided space_station_hires. jpg.

Report how long it takes to run compared to the non-parallel code (sbatch time_before.sh)


https://computing.llnl.gov/tutorials/openMP/
http://web.eece.maine.edu/~vweaver/classes/ece574/ece574_hw5_code.tar.gz

4. Performance Measurement (1 point)

Just like HW#5 use PAPI to measure the time various subcomponents take to run. Have your
code print to the screen the wallclock time taken by:

(a) load_jpeg ()

(b) parallel sobelx/sobely

(c) combine

(d) store_Jjpeg ()

Calculate the speedup and parallel efficiency compared to the non-parallel version and report the
results in your README.

5. Fine-grained Threading (4 points)

For this part, update the code to do some sort of fine-grained parallelism. How you do it is up to you.
The most straightforward way of doing this is using an OpenMP for directive. The easiest way to
do this is to go into your convolve and combine routines and convert one of the for loops to be
parallel.

For this exercise modify the sobel_fine. c file.

Some things to watch out for: remember to mark as private your various loop iterators and other
variables (such as sums, etc.)

If you don’t want to have to keep checking the image to be sure your code is working, an alternate
is to use a checksum like md5sum to verify the output file matches. (the md5sum of the sobel
output from space_station_hires.jpg is 7al7b02fe7ede676b575f6f66badfall)

Record the total time (using time) as well as the PAPI timing measurements for 1, 2, 4, 8, 16,
and 32 threads. Change the thread count by modifying the OMP_NUM_THREADS variable in
time_fine. sh before running sbatch. Please don’t hard-code the thread count into your pro-
gram.

Does changing the thread scheduler from static to dynamic change your performance in the 16-
thread case?

6. Something cool (1 point) Do something cool to further improve the performance of your code. It
can be one of the following, or else you can try something of your own. Copy your code over to
sobel_cool.c and edit that for this part.

Change another option (scheduler, loop collapse, simd, etc) and report how it changes the result
in the 16-thread case.

See if you can work out a way to use an openmp-reduction in your code, and see if it helps
performance.

7. Submitting your work

Be sure to edit the README to include your name, as well as the timing results and answers to
questions.

Run make submit and it should create a file called hwO5_submit .tar.gz.

e-mail the file to me by the homework deadline.



