
ECE 574 – Cluster Computing
Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 February 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#3 will be posted

• I found my code with SSE intrinsics, here is a brief

excerpt of what it looks like to allocate a 256-bit variable

and load a vector to it.
__m256i in1;

/* vmovdqa (%rcx),%ymm1 */

__m256i filter_avx = _mm256_load_si256((__m256i *) filter);

1

Workload for future Homeworks

• Matrix multiply is typical, but boring

• What else can we use that’s embarrassingly parallel, but

interesting?

2

Convolution

• https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

• Specifically 2-D convolution

• Widely used in image processing

• Walk over every pixel in an image, convolving a matrix

over it. The new value is based on some combination of

the surrounding pixels.

• Usually a 3x3 grid, but can be larger

3

https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

Common Convolution Matrices

• Identity =
0 0 0
0 1 0
0 0 0



• Blur =
1 1 1
1 1 1
1 1 1

 (need to normalize)

• Sharpen =
 0 −1 0
−1 5 −1
0 −1 0



• Emboss =
−2 −1 0
−1 1 1
0 1 2



• Sobel (edge detection) =
 1 2 1

0 0 0
−1 −2 −1

1 0 −1
2 0 −2
1 0 −1



4

What does a framebuffer look like

• Depends on many things

• Bits-per-pixel, 1bpp, 2bpp, 4bpp, 8bpp, 15bpp, 16bpp,

24bpp, 32bpp

• We will be using 24bpp, with RGB each being one byte

• 2D image is a 2D array, but that’s hard to do in C, so

we will just do a 1D array

5

One way to implement the convolution

There are many ways you can implement this, some will

be faster than others. The one shown below is definitely

not the fastest.

Below is *pseudo code*. It won’t compile, as you won’t be

able to do the triple array access as pictured, you’ll have

to access the values as a 1-D array as discussed in class.

6

for(x=1;x<width -1;x++) {

for(y=1;y<height -1;y++) {

for(color =0;color <3; color ++) {

sum =0;

sum+= filter [0][0]* old[x-1][y-1][color];

sum+= filter [1][0]* old[x][y-1][color];

sum+= filter [2][0]* old[x+1][y-1][color];

sum+= filter [0][1]* old[x-1][y][color];

sum+= filter [1][1]* old[x][y][color];

sum+= filter [2][1]* old[x+1][y][color];

sum+= filter [0][2]* old[x-1][y+1][color];

sum+= filter [1][2]* old[x][y+1][color];

sum+= filter [2][2]* old[x+1][y+1][color];

/* Normalize if necessary */

/* (not necessary for Sobel) */

/* Saturate if necessary */

/* Make sure stays in 0 to 255 range */

(your code here)

/* Set the new value */

7

new[x][y][color]=sum;

}

}

}

Hints:

• a[x][y][color] should be done as

a[(y*xsize*3)+(x*3)+color]

You might want to write a helper function that does this

for you.

• Remember in C that array indexes begin at 0, not 1.

8

Sobel Convolution

• For Sobel we do not need to normalize the result, but

we do need to saturate

Meaning if the results is greater than 255, set to 255, or

if less than zero, set to zero. Otherwise will wrap and

give odd results.

• In the homework we will find the horizontal edge, the

vertical edge, and then combine the two for the final

result by for each element squaring the two results then

taking the square root.

9

PAPI Usage Instructions

• Initialize with:

PAPI library init(PAPI VER CURRENT);

Check the result to see if it matches PAPI VER CURRENT

• All other functions should return PAPI OK if successful.

• If using pthreads need to do:

PAPI thread init(pthread self);

• Eventsets are just integers

int eventset=PAPI NULL;

10

• Gathered results are typically 64-bit integers

long long values[NUM];

Where NUM is the number of events you are measuring

at once.

• Create an eventset:

PAPI create eventset(&eventset);

• Available events can be seen with the papi avail and

papi native avail commands.

• Add an event. You can run multiple times to add

multiple events.

11

PAPI add named event(eventset,"PAPI TOT INS");

• Before the code of interest do a

PAPI start(eventset);

• Afterward do a

PAPI stop(eventset,values);

and you can print the value or save it for later.

• When printing, remember the results are 64 bits.

printf("Result: %lld",values[0]);

12

How to Optimize

• ROW vs Column Major? FORTRAN vs C? Comes down

to using cache in an expected way.

• Loop order? Again, want to access in a way that keeps

things in cache

• Loop unrolling? Avoids branch issues, etc.

• SIMD? Definitely a case where we could load all 4

channels and operate on them at once. Possibly multiple.

A bit advanced for this class though.

13

Evolution of Parallel Hardware – Computer
Archiecture Review

14

Parallel Computing – Single Core

15

Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (Instructions per Cycle

(IPC) 1.0 or less)

• Example – single instruction take 1-5 cycles?

ALU

PC

Control

CPU

Memory Regs

16

Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average? (Theoretical max IPC 1.0)

IF ID EX MEM WB

17

Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

18

Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

19

Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

20

Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

21

Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

22

Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

23

The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

24

Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,

25

a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

26

Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

27

Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

28

Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

• What happens on exception? (interrupt, branch

mispredict, etc)

29

• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?

30

SIMD / Vector Instructions

• SISD – single instruction, single data, your normal serial

processor

• SIMD – single instruction, multiple data – one instruction

can act on many values in parallel

• MISD – multiple instruction, single data – wavefront or

pipeline? some debate about if this really exists

• MIMD – sort of like a cluster

31

SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon

32

SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product

33

AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-ZMM31

34

SSE example (From Wikipedia)

Doing a 4 element single-prevision vector add would take

4 separate floating point adds:

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

With SSE you only need one add instruction:

movaps xmm0 , [v1] ;xmm0 = v1.w | v1.z | v1.y | v1.x

addps xmm0 , [v2] ;xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0

35

Intrinsics
__m256i in1;

/* vmovdqa (%rcx),%ymm1 */

__m256i filter_avx = _mm256_load_si256((__m256i *) filter);

36

ARM NEON

• Cortex A8, optional on Cortex A9

• 64 or 128bit, but some procs break 128-bit into two

operations

• 8, 16, 32-bit ints, single-precision floating point

37

SIMD Benefits

• Can be faster (2, 4, 8, 16, etc. things at once)

38

SIMD Drawbacks

• Harder to code (assembly or clever compiler)

• Puts more pressure on memory.

• More registers to save at context switch

39

Types of Clusters

• Shared-memory: many CPUs, but one shared memory

address space. Usually one copy of operating system.

When write to memory, all CPUs can see it.

• Distributed: man systems spread across network. Each

has own memory. For other CPUs to see data have to

send message across network.

40

Multicore Systems

• Single Package: CMP (Chip-multiprocessor) or SMP

(Symmetric-multiprocessor)

• Multi-package: Multiple CMP packages in system.

41

CMP Diagram

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

42

Hardware Multi-Threading

• Idea is to re-use a pipeline to execute multiple threads

at once, *without* fully replicating the entire CPU (so

less than multicore)

• You will have to replicate some things (program counter

for each, etc)

• Usually they appear to the CPU as full separate

processors even though they are not.

• Various ways to do this:

43

◦ Fine-grained – rotate threads every cycle

◦ Coarse-grained – rotate threads only if long latency

event happens (cache miss)

◦ Simultaneous – issue from any combination of threads,

to maximize use of pipeline (have to be superscalar)

• Why do this? Often on superscalar running only one

thread will leave parts idle, try to make use of these.

• Bad side effects?

Can actually slow down code (especially if both threads

44

trying to use same functional units, also if both using

memory heavily as cache is often shared)

• Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the

same thing

• Modern security issues, leak info between threads

45

SMT Diagram

PC
Ins Queue

PC
Ins Queue

PC
Ins Queue

46

