
ECE 574 – Cluster Computing
Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 February 2021

Announcements

• Homework #3 was posted. Don’t put it off until the

last minute!

• Lots of coding

• Later homeworks will build off of it, but don’t worry I

will procvide solutions

1

Homework #2 Review

• 2

1.

Procs 1 2 3 4 8 16 32 64

Time 115 61 ?? 34 22 18 18 ??
GFLOPS 46 88 ??? 159 244 299 297 ???
Speedup — 1.9 ??? 3.4 5.2 6.4 6.4 ????

Peff — 0.95 ??? 0.85 0.65 0.40 0.20 ???

2. 2b) Speedup: (t1/tp)

3. 2c) Parallel effic: (Sp/p or T1/pTp)

4. 2d) Yes, time decreases as you add cores.

Not ideal strong scaling though.

5. 2e) No weak, didn’t test with sizes constant

2

6. Time is less as only dgemm, not malloc or randomizing

7. More because user adds up all threads/cores

• 3

◦ 3a) dgemm kerenel (double-precision generic matrix-

matrix multiply. algorithm kernel (core) not Linux

kernel)

If you got bit time in kernel, you ran perf on time
◦ 3b)

0.30 | vbroadcastsd -0x60(%rdi),%ymm0

0.23 | vfmadd231pd %ymm0,%ymm1,%ymm4

0.27 | vfmadd231pd %ymm0,%ymm2,%ymm8

0.28 | vfmadd231pd %ymm0,%ymm3,%ymm12

0.22 | vbroadcastsd -0x58(%rdi),%ymm0

0.43 | vfmadd231pd %ymm0,%ymm1,%ymm5

3

0.20 | vfmadd231pd %ymm0,%ymm2,%ymm9

0.36 | vfmadd231pd %ymm0,%ymm3,%ymm13

0.09 | vbroadcastsd -0x50(%rdi),%ymm0

in dgemm kernel() vbroadcastd – broardcast fp value

in memory 4 times in register vfmadd231pd – fused

multiply-add of packed doubles. 231 refers to the order

of the operands

◦ 3c) skid

4

Homework #2 More

If ideal strong scaling, then parallel efficiency would be

closer to 1. Not enough results for weak scaling.

To get 1G/core, roughly 2
3 ∗ n

3 = 500B ∗ p
Cores N=20k Size=3.2G Size=1G/core time Speedup GFLOPs

1 119s 3.2G 11,000 9000 11.5 —- 42.5

2 64s 1.6G 16,000 11500 14 0.82 72

4 37s 0.8G 22,360 14400 14 0.82 139

8 22s 0.4G 31,600 18200 18 0.63 222

16 18s 0.2G 44,700 22900 26 0.44 304

32 18s 0.1G 63,240 28800 47 0.24 336

64 18s 0.05G 89,000 36000 93 0.12 334

5

Cache Coherency

• How do you handle data being worked on by multiple

processors, each with own cache of main memory?

• Cache coherency protocols.

• Many and varied. MESI is a common one

• Directory vs Snoopy

6

MESI

• Modified, Exclusive, Shared, Invalid

7

Barriers and Ordering

• On modern out-of-order execution, memory accesses can

happen out-of-order

• Sequential consistency – all happen in order

• Strong consistency – stores

• Weak consistency – can be arbitrarily reordered, only

barriers protect you

• A memory barrier instruction makes sure all previous

8

loads/stores finish before moving on

• Most important for things like locks, as well as memory-

mapped I/O

9

Ordering Example
y1=0

y2=0

y1=3

y2=4

Another core

x1=y1

x2=y2

What values of x1 and x2 can you get?

Strong:

x1=0,x2=0

x1=3,x2=0

x1=3,x2=4

Weak:

x1=0,x2=4

10

Haswell EP Setup

CPU0

CPU1

CPU2

CPU3 CPU4

CPU5

CPU6

CPU7LLC0

LLC1

LLC2

LLC3 LLC4

LLC5

LLC6

LLC7

DIMM3

DIMM2

DIMM1

DIMM0

Home Agent
Mem Controller

QPI
PCIe

11

NUMA

Non-uniform memory access – some accesses will have to

cross to other processors, causing extra delay. How can

you optimize this?

12

Traditional NUMA Layout

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

CPU CPU CPU
0 1 N

...

...
I$/D$I$/D$I$/D$

Main Memory

13

Parallel Programming!

14

Processes – a Review

• Multiprogramming – multiple processes run at once

• Process has one view of memory, one program counter,

one set of registers, one stack

• Context switch – each process has own program counter

saved and restored as well as other state (registers)

• OSes often have many things running, often in

background.

15

On Linux/UNIX sometimes called daemons

Can use top or ps to view them.

• Creating new: on Unix its fork/exec, windows

CreateProcess

• Children live in different address space, even though it

is a copy of parent

• Process termination: what happens?

Resources cleaned up. atexit routines run.

How does it happen?

16

exit() syscall (or return from main).

Killed by a signal.

Error

• Unix process hierarchy.

Parents can wait for children to finish, find out what

happened

not strictly possible to give your children away, although

init inherits orphans

• Process control block.

17

Threads

• Each process has one address space and single thread of

control.

• It might be useful to have multiple threads share one

address space

GUI: interface thread and worker thread?

Game: music thread, AI thread, display thread?

Webserver: can handle incoming connections then pass

serving to worker threads

Why not just have one process that periodically switches?

18

• Lightweight Process, multithreading

• Implementation:

Each has its own PC

Each has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

19

• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

20

Thread Implementations

• Cause of many flamewars over the years

21

User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

22

kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

23

Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

24

– Might be slower

25

Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

26

Linux

• Posix Threads

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

27

Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

• NPTL – New POSIX Thread Library

Kernel threads

Clone. Add new futex system calls. Drepper and Molnar

at RedHat

Why kernel? Linux has very fast context switch

compared to some OSes.

Need new C library/ABI to handle location of thread-

28

local storage

On x86 the fs/gs segment used. Others need spare

register.

Signal handling in kernel

Clone handles setting TID (thread ID)

exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

29

Pthread Programming

• based on this really good tutorial here:

https://computing.llnl.gov/tutorials/pthreads/

30

Pthread Programming

• Changes to shared system resources affect all threads in

a process (such as closing a file)

• Identical pointers point to same data

• Reading and writing to same memory is possible

simultaneously (with unknown origin) so locking must

be used

31

When can you use?

• Work on data that can be split among multiple tasks

• Work that blocks on I/O

• Work that has to handle asynchronous events

32

Models

• Pipeline – task broken into a set of subtasks that each

execute serial on own thread

• Manager/worker – a manager thread assigns work to a

set of worker threads. Also manager usually handles I/O

static worker pool – constant number of threads dynamic

worker pool – threads started and stopped as needed

• Peer – like manager/worker but the manager also does

calculations

33

Shared Memory Model

• All threads have access to shared memory

• Threads also have private data

• Programmers must properly protect shared data

34

Thread Safeness

Is a function called thread safe?

Can the code be executed multiple times simultaneously?

The main problem is if there is global state that must

be remembered between calls. For example, the strtok()

function.

As long as only local variables (on stack) usually not an

issue.

Can be addressed with locking.

35

POSIX Threads

• 1995 standard

• Various interfaces:

1. Thread management: Routines for manipulating

threads – creating, detaching, joining, etc. Also for

setting thread attributes.

2. Mutexes: (mutual exclusion) – Routines for creating

mutex locks.

3. Condition variables – allow having threads wait on a

lock

36

4. Synchronization: lock and barrier management

37

POSIX Threads (pthreads)

• A C interface. There are wrappers for Fortran.

• Over 100 functions, all starting with pthread

• Involve “opaque” data structures that are passed around.

• Include pthread.h header

• Include -pthread in linker command to compiler

38

