
ECE 574 – Cluster Computing
Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 February 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted

1

Homework #3 – Copying Files

• For Linux/OSX easiest way to copy files to local machine
something like:

scp -P2131 ece574-0@weaver-lab.eece.maine.edu:hw03_submit.tar.gz .

• On windows WinSCP is widely used

• There are various GUI SCP options for Linux/OSX too

but I’ve never used them so can’t particularly recommend

any.

2

HW#3 – General Comments

• Comment your code!

• Don’t ignore compiler warnings!

• You can compare your butterfinger results against the

provided ones. md5sum can be used for that.

• Issues I saw:

◦ You need to saturate to 255 in combine function too

sqrt(255*255+255*255) is greater than 255.

If you wrap around in 8-bits your results will be off.

3

General C array Comment

• Why a linear array and not multidimensional?

C doesn’t do dynamically sized multi-dimensional well

• It’s all a fiction anyway. You always get a linear array.

The multiply/add we are doing is what the compiler does

behind the scenes.

• You might think the whole multiply/add stuff would

kill performance, but the compiler can often reduces it

to just one CPU instruction on x86 (the magical load

effective address lea instruction

4

Butterfinger Results

Butterfinger was a pet guinea pig from long ago.

Note on benchmark images, most famous for image

processing “Lena”

time ./sobel ./butterfinger.jpg

output_width=320, output_height=320, output_components=3

SOBELX L3 CACHE MISSES: 1554 CYCLES 9436089

SOBELY L3 CACHE MISSES: 0 CYCLES 9362614

COMBINE L3 CACHE MISSES: 3 CYCLES 6574264

real 0m0.048s user 0m0.024s sys 0m0.004s

5

• Why 0 cache misses for SOBELY?

Cache. 320*320*3=307k

IN, SOBEL X, SOBEL Y, COMBINED, so 300k*4 =

1.2MB or so

• Haswell-EP has 20MB of L3 cache

• Reading causes misses to read input in, rest are writing

out so while not necessarily hits, with write allocate

cache do not seem to be accounted for as misses

6

Brief Cache Overview

• Haswell-EP caches

memory – 200+ cycles best case 20MB of L3, 20MB,

64B/line (30-60 cycles?)

256kB per-core L2, 64B/line, 8-way (12-cycles)

32kB per-core L2, 64B/line, 8-way (4 cycles)

• Chunks of fast memory close to CPU

• Multiple levels

• Memory broken up into cacheline sized chunks (64-byte

7

on HSW-EP)

• When access an address, all 64-B brought in even if not

need rest

• When cache full, something is kicked out to make room

(usually oldest)

• Want to take advantage of spatial and temporal locality

• With butterfinger all fits in L3 cache

8

Earth, Straight implementation of
pseudo-code

./sobel ./earth_06_03_2018.jpg

output_width=2048, output_height=2048, output_components=3

SOBELX L3 CACHE MISSES: 318,572 CYCLES 559,078,407

SOBELY L3 CACHE MISSES: 285,851 CYCLES 556,456,869

COMBINE L3 CACHE MISSES: 593,838 CYCLES 335,950,332

real 0m0.759s user 0m0.688s sys 0m0.032s

12MB, fits in cache?

9

Space Station, Straight implementation of
pseudo-code

./sobel ./space_station_hires.jpg

output_width=4288, output_height=2929, output_components=3

L3 CACHE MISSES: 1,135,130 CYCLES 1,670,349,917

L3 CACHE MISSES: 1,125,314 CYCLES 1,638,624,347

L3 CACHE MISSES: 1,751,949 CYCLES 967,758,034

real 0m1.741s user 0m1.647s sys 0m0.048s

10

perf report

67.88% sobel sobel [.] generic_convolve

20.27% sobel sobel [.] main

0.74% sobel [unknown] [k] 0xffffffffa1e00a27

0.33% sobel libjpeg.so.62.2.0 [.] 0x0000000000037902

0.27% sobel [unknown] [k] 0xffffffffa1e0015f

0.26% sobel libjpeg.so.62.2.0 [.] 0x0000000000037912

0.24% sobel libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

perf annotate

0.39 | add %r11d,%ebx

2.86 | cmp $0xff,%ebx

3.57 | cmovg %eax,%ebx

| output_image->pixels[(y*output_ima

0.04 | mov (%r12),%eax

0.78 | imul %r14d,%eax

0.05 | add %esi,%eax

11

0.42 | imul 0x8(%r12),%eax

0.06 | mov 0x10(%r12),%rsi

0.69 | add %ecx,%eax

0.18 | test %ebx,%ebx

7.08 | cmovs %edi,%ebx

1.82 | cltq

perf annotate last time

sum += filter[0][2]*(input_image->p

0.61 | movslq %r11d,%r11

0.66 | movzbl (%rcx,%r11,1),%esi

| convert():

| return (y*xsize*depth)+(x*depth)+color;

42.22 | lea (%r9,%rbx,1),%r11d

| generic_convolve():

12

• Conditional move?

• Compiler crazy. All mixed up. In-lined the combine

routine.

• 4288*2929=36MB (larger than L3)

13

Loop Order Optimization

• How is an array laid out in memory?

Row-major (C) vs Column-major (Fortran)

• Default with loop x then y, are actually walking columns.

Worst case.

• Switch order of loops, things get a lot better.

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 21,246 CYCLES 882,000,608

SOBELY L3 CACHE MISSES: 19,556 CYCLES 881,998,207

COMBINE L3 CACHE MISSES: 1,241,446 CYCLES 1,183,759,970

real 0m1.181s user 0m1.112s sys 0m0.052s

14

Loop Unrolling

• Loop unrolling. Unroll the color loop (explicitly do the

three things 0, 1, 2 and put the values in.

• Can have benefits. Change all occurrences of “color” to

be a constant, which can be optimized.

• Remove branches, which can be slow or mispredicted.

• More code for out-of-order processor to work with and

try to do in parallel.

• Downsides: if gets too large: no longer fit in instruction

cache or loop stream detector.

15

Other Optimizations

• Other optimizations, often are things the compiler does

for you with -O2.

• Hoisting (move things out of loop that only need to be

done once)

• Simplification. Lots of things.

• Try another compiler (clang?)

• Take a compiler class.

16

Convert to one single Loop

No need to iterate X and Y and Color, just walk through

output linearly. Really you have three pointers of input

(line above, current line, below).

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 15,703 CYCLES 411,148,087

SOBELY L3 CACHE MISSES: 15,334 CYCLES 411,284,853

COMBINE L3 CACHE MISSES: 1,245,842 CYCLES 1,186,204,125

real 0m0.924s user 0m0.848s sys 0m0.044s

17

Same for Combine

No need to offset, just start at beginning of x and y and

write to output, doing the combine operation.

time ./sobel_improved ./IMG_1733.JPG output_width=3888, output_height=2592, out$

L3 CACHE MISSES: 16,188 CYCLES 410,983,833

L3 CACHE MISSES: 14,850 CYCLES 411,059,831

L3 CACHE MISSES: 36,652 CYCLES 496,394,104

real 0m0.690s

user 0m0.628s

sys 0m0.040s

18

ISRA= interprocedural scalar replacement of aggregates,

39.71% sobel_improved sobel_improved [.] generic_convolve.isra.0

24.51% sobel_improved sobel_improved [.] main

2.41% sobel_improved [kernel.kallsyms] [k] clear_page_c_e

1.23% sobel_improved libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

1.02% sobel_improved libjpeg.so.62.2.0 [.] 0x0000000000039356

0.83% sobel_improved [kernel.kallsyms] [k] page_fault

19

SIMD (SSE/AVX)

• SIMD = Single Instruction, multiple data

One instruction (say add) can add multiple values at

once

• On intel chips SSE, SSE2, etc. Up to AVX/AVX2 on

newer systems

• 256-bit wide registers. So sixteen 16-bit values (can do

integer), Four 64-bit doubles, etc.

20

• Large number of these registers, xmm0 (128bit) ymm0

(256bit) zmm0 (512bit on newer machines)

• One way is to program in assembly language with some

obscure opcodes: an example PMADDWD 16-bit integer

parallel 128-bit multiply and add

• On recent gcc and other compilers there are “intrinsics”

to use in C, for example you can use mm madd epi16()

to do a PMADDWD instruction

21

Initial SIMD try

9 values from the three input pointers (16-bit)

A B C X D E F X G H I X X X X X

The sobel filter values (16-bit)

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Multiply and add all in parallel

A1+B2 C3+0 D4+E5 F6+0 G7+H8 I9+00 0+0 0+0

Rearrange and then do a "horizontal add"

A1+B2+G7+H8 C3+I9 D4+E5 F6+0

Another Horizontal Add

0 0 A1+B2+G7+H8+C3+I9 D4+E5+F6

Another Horizontal Add

0 0 0 A1+B2+G7+H8+C3+I9+D4+E5+F6

Convert to 16-bit result, saturate, and be done

The 18 ops (9mul/9add) turned into 4 ops

22

Problems

• Math is very fast, handfull of instructions

• Problem is getting memory from 3 pointers with 3-byte

offsets into registers

• This is a “scatter/gather” problem found often with

SIMD (and GPU)

• There are instructions to try to gather the values

together, but not really suited for this

• Once you do it manually performance is actually worse

than regular code

23

• Challenge: if picture not multiple of 16-bytes

24

Improved SIMD – Can we do better?

With many problems: re-think outside the serial box

Load full 16 bytes of pixel info from the three pointers,

multiply by the 9 values in sobel filter, shifting right by 3

A * RGB RGB RGB RGB RGB RGB R

B * RGB RGB RGB RGB RGB R

C * RGB RGB RGB RGB R

D * RGB RGB RGB RGB RGB RGB R

E * RGB RGB RGB RGB RGB R

F * RGB RGB RGB RGB R

G * RGB RGB RGB RGB RGB RGB R

H * RGB RGB RGB RGB RGB R

+ I * RGB RGB RGB RGB R

===================================

RGB RGB RGB RGB R 13 values of result

Use compare instruction to saturate in parallel

Store out the 13 bytes at once

So (18*13) operations reduced to (~20) I think. Still haven’t tried this yet

25

OpenMP

A few good references:

• https://computing.llnl.gov/tutorials/openMP/

• http://bisqwit.iki.fi/story/howto/openmp/

• http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

26

https://computing.llnl.gov/tutorials/openMP/
http://bisqwit.iki.fi/story/howto/openmp/
http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

OpenMP

• Goal: parallelize serial code by just adding a few compiler

directives here and there

• No need to totally re-write code like you would with

pthread or MPI

27

OpenMP Background

• Shared memory multi-processing interface

• C, C++ and FORTRAN

• Industry standard made by lots of companies

• OpenMP 1.0 came out in 1997 (FORTRAN) or 1998

(C), now version 5.1 (2020)

• gcc support “recently” donated, CLANG even newer

• gcc added support in 4.2 (OpenMP 2.5)

4.4 (OpenMP 3.0), 4.7 (OpenMP 3.1), 4.9 (OpenMP

4.0), 5.0 (Offloading)

28

OpenMP

• Master thread with Fork/Join methodology

• Can possibly have nested threads (implementation

dependent).

• Can possibly have dynamic num of threads

(implementation dependent)

• Relaxed consistency, threads can cache local variables,

so if you need memory to be consistent might need to

flush it.

29

OpenMP Interface

• Compiler Directives

• Runtime Library Routines

• Environment Variables

30

Compiler Support

• On gcc, pass -fopenmp

• C: #pragma omp

• FORTRAN: C$OMP or !$OMP

31

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

32

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements

33

Environment Variables

• Setting number of threads

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy

34

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads);

}

35

}

/* End of block , waits and joins automatically */

return 0;

}

36

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

• In C++ special rules on throw/catching

37

parallel directive
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

38

if

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• Why do this? Maybe it’s only worth parallelizing if N

greater than 16 due to overhead, can put if (N>16)

then

39

Variable Scope

• When you enter a parallel section, which variables are

thread-local and which ones are globally visible?

• By default shared, but there are times you want per-

thread data and not globally visible (loop indices for

one)

• You specify in the parallel block how you want all of the

variables to behave

◦ private – variables that are private. The value is

undefined at start and discarded at end

40

◦ shared – variables seen by all threads, all can be written

to. Value at end is whatever the last thread wrote to

it

◦ firstprivate – a variable inside a parallel section ends

up with the value it had before the parallel section

◦ lastprivate – a variable after the parallel section gets

the value from the last loop iteration

◦ copyin – you can declare special “Threadprivate”

values that hold their value across parallel sections.

Use this to copy the value in from the master thread.

• default – you can set to shared or none (more on C),

41

none means you have to explicitly share or private each

var (makes it easier to catch bugs but more tedious)

42

Setting number of threads

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1

43

How do you actually share work?

Could do work with this, split things up manually by

having a lock/critical section and divide up work per-

thread. But easier way?

44

Work-sharing Constructs

• Must be inside of a parallel directive

◦ do/for (do is Fortran, for is C)

◦ sections

◦ single – only executed by one thread

◦ workshare – iterates over F90 array (Fortran90 only)

45

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

46

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

Note: loop must be simple. Integer expressions (nothing

47

super fancy). Comparison must be only regular equals or

greater/less. Iterator must be simple increment/decrement

or add/subtract.

Loop iterator should be private. Why? What happens

if all threads could update a global iterator?

48

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

49

Scheduling

• By default, splits to N size/p threads chunks statically.

• schedule (static,n) chunksize n

for example, if 10, and 100 size problem, 0-9 CPU 1,

10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPU1.

• But what if some finish faster than others?

• dynamic allocates chunks as threads become free. Can

have much higher overhead though.

◦ static – divided into size chunk, statically assigned to

threads

50

◦ dynamic – divided into chunks, dynamically assigned

threads as they finish

◦ guided – like dynamic but shrinking blocksize

why do this? When problem first starts lots of big

chunks left. But near end probably not even, could

end up with one thread getting large chunk and rest

none. Better load balancing.

◦ runtime – from OMP SCHEDULE environment

variable

◦ auto – compiler picks for you

51

Other Options

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed

if “perfectly nested” meaning nested with nothing inside

the nests. Compiler can turn this into one big loop

52

