
ECE 574 – Cluster Computing
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 February 2021

Announcements

• HW#5 will be posted, OpenMP

1

How do you actually share work?

Could do work with this, split things up manually by

having a lock/critical section and divide up work per-

thread. But easier way?

2

Work-sharing Constructs

• Must be inside of a parallel directive

◦ do/for (do is Fortran, for is C)

◦ sections

◦ single – only executed by one thread

◦ workshare – iterates over F90 array (Fortran90 only)

3

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

4

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

Note: loop must be simple. Integer expressions (nothing

5

super fancy). Comparison must be only regular equals or

greater/less. Iterator must be simple increment/decrement

or add/subtract.

Loop iterator should be private. Why? What happens

if all threads could update a global iterator?

6

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

7

Scheduling

• By default, splits to N size/p threads chunks statically.

• schedule (static,n) chunksize n

for example, if 10, and 100 size problem, 0-9 CPU 1,

10-19 CPU 2, 20-29 CPU3, 30-39 CPU4, 40-49 CPU1.

• But what if some finish faster than others?

• dynamic allocates chunks as threads become free. Can

have much higher overhead though.

◦ static – divided into size chunk, statically assigned to

threads

8

◦ dynamic – divided into chunks, dynamically assigned

threads as they finish

◦ guided – like dynamic but shrinking blocksize

why do this? When problem first starts lots of big

chunks left. But near end probably not even, could

end up with one thread getting large chunk and rest

none. Better load balancing.

◦ runtime – from OMP SCHEDULE environment

variable

◦ auto – compiler picks for you

9

Other Options

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed

if “perfectly nested” meaning nested with nothing inside

the nests. Compiler can turn this into one big loop

10

Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i]; /* no dependency (though careful if x is global) */

a[i]=b[i]; /* probably no dependency but on C can alias */

a[i]=a[i+1]; /* depends on next iteration of loop */

}

11

Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivalent, can we parallelize this?
for(i=0;i <1000;i++)

t[i]=a[i+1]

for(i=0;i <1000;i++)

a[i]=t[i]

More overhead, but can be done in parallel

12

Reductions

• reduction – vector dot product. The work is split up

into equal chunks, then the operator provided is used to

? and then they are all combined for final result.

so reduction(+:a) will add up all threads as to final value

13

Reduction Example
for (int i=0;i <10;++i) {

a = a op expr

}

• expr is a scalar expression that does not read a

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8) num_threads(num_th$

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction?*/

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

14

OMP Sections

You could implement this with for() and a case

statement (gcc does it that way?)
#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

Will run the two sections in parallel at same time.

15

Synchronization

• OMP MASTER – only master executes instructions in

this block

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access faster

• OMP BARRIER – force all threads to wait until all are

done before continuing

16

there’s an implicit barrier at the end of for, section, and

parallel blocks. It is useful if using nowait in loops

17

Synchronization

• Critical sections pragma omp critical (name)

• Barriers

• Locks

• omp init lock()

• omp destroy lock()

• omp set lock()

18

• omp unset lock()

• omp test lock()

19

Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be uptodate across threads

20

Other Notes

can call functions, functions outside of directives can

still have openMP directive sin them (orphan directives)

21

Nested Parallelism

• can have nested for loops, but by default the number of

threads comes from the outer loop so an inner parallel

for is effectively ignored

• can collapse loops if prefectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(1); can enable nesting, but then you

end up with OUTER*INNER number of threads

22

• alternately, just put the #parallel for only on the inner

loop

23

OpenMP features

• 5.0

task reduction

not-equals can appear in loop comparisons

• 4.0

support for accelerators (offload to GPU, etc)

SIMD support (specify simd)

better error handling

CPU affinity

task grouping

24

user-defined reductions

sequential consistent atomics

Fortran 2003

• 3.1

• 3.0

tasks

lots of other stuff

25

Pros and Cons

• Pros

– portable

– simple

– can gradually add parallelism to code; serial and parallel

statements (at least for loops) are more or less the

same.

• Cons

– Race conditions?

26

– Runs best on shared-memory systems

– Requires recent compiler

27

OpenMP Examples

See the course website for a link to a tarball with all the

examples.

28

Simple

openmp simple.c just creates a parallel region and

prints thread number. By default, how many threasd are

set up on the Haswell-EP machine?

29

Scope

TODO: private/shared variable example

30

for

openmp for.c

• Parallelizes the memory init loop.

• Thread number set from command line and the

num threads() directive.

• What happens to performance as you add threads?

31

static schedule

openmp static schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices at compile time.

• In example, thread 0 is fastest and 4 the slowest.

• You can see thread 0 runs through its assignment fast

and then sits around doing nothing while the rest slowly

finish.

32

dynamic schedule

openmp dynamic schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices dynamically.

• Each thread starts with one, but zero runs all the rest

because it is so fast.

33

Changing Chunksize

openmp dynamic chunk.c

• Creates 100 threads with a prime number chunksize.

• Threads are assigned same amount of time to run.

• Spread mostly evenly but the last set of chunks, only

two threads get assigned while the others have nothing

to do.

• Switch to “guided” and the chunksize decreases over

time and the ending is a bit more balanced.

34

critical

openmp critical.c

• Has a parallel loop, but a shared global counter inside.

• What happens without a critical section? (race

condition)

• Put in the critical section get right results.

• But slow!

• No need to manually add mutexes, OpenMP abstracts

that away.

35

section

openmp section.c

• For parallelism when you don’t have a loop

• Have multiple functions that have no dependencies, want

to run at same time?

• No matter how many threads you have, only can run up

to the maximum number of sections at a time.

36

reduction

openmp reduction.c

• What if you calculate something in each loop iteration,

but want to sum them all in the end? Something like a

vector dot product?

• You could put it in a for loop, sum = sum+ i ∗ a[i] but

race condition on shared sum.

• Could put in critical section but that’s slow as we saw.

• Instead can use special reduction directive.

37

simd reduction

openmp simd reduction.c

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

• simd directive

• Supported by recent GCC (5.0 and later)

• Tries to map your code into SSE/AVX vector instructions

if available on your processor.

• Our example turns out runs *slower*. Possibly our input

set is not big enough.

• Can look at assembly code to verify it is making SIMD

38

code:

objdump --disassemble-all openmp simd reduction

• Also you can use gcc -S to generate assembly.

look for pmul and xmm registers

39

offload

Can offload to GPU or MIC.

https://gcc.gnu.org/wiki/Offloading

Need separate compiler for component. Support really

isn’t there yet.

40

