
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 March 2021

Announcements

• Homework #4, working on grading

• Midterm will be next Thursday (the 7th). More details

as it gets closer

• Project, will post more info on it soon

1

HW#4 Review

• Debugging – Valgrind for memory bugs!

valgrind ./sobel coarse buttferfinger.jpg

• Helgrind – valgrind --tool=helgrind

can find locking bugs

• Valgrind breaks on recent PAPI sometimes, I’ve actually

contributed a patch to them to fix that

• You might get some false positives due to the way the

provided code uses malloc, switch to calloc and it will be

happier (on Linux the malloc code is likely getting zeros

2

by default which is why the result was still looking OK)

3

HW#4 Review

• Low-level C is a pain. Things like passing pointers to

double-indexed arrays, and (void *) casting.

I’d like to say you’ll never see this, but if you ever get a

job doing Linux kernel or similar low level work there’s a

lot of this that goes on.

• Hopefully you’ll find OpenMP is a lot simpler.

• Some results on a 10848x10824 NASA image I found:

4

bench Load convolve combine store

before 945,172 20,972,969 1,740,545 865,404

coarse(2) 952,647 10,752,946 1,785,945 882,353

fine 1 960,527 10,582,954 12,303,506 921,339

fine 2 5,418,575 6,255,203

fine 8 935,998 1,491,921 3,574,811 928,533

fine 16 729,125 2,097,431

fine 32 627,906 714,431
• Should see some speedup, even if not perfect.

Be sure your joins are *after* both threads started.

• Max speedup? Below, significant time in load/store

5

combine so even if perfect convolution...

Load time: 98257

Convolve time: 871411

Combine time: 266956

Store time: 107583

• Question: was an example of deadlock.

6

Shared Memory vs Distributed Systems

Reminder: shared memory has one copy of OS and all

programs see one unified memory space.

7

Shared Memory

• OpenMP is nice to use. But what if your problem won’t

fit on a single machine?

• How big can a shared-memory machine be?

• SGI UV systems at least 4096 cores and 16TB running

one Linux image

http://www.techeye.net/hardware-2/sgi-builds-pittsburgh-4096-processor-core-16tb-shared-memory-supercomputer

• Digression about SGI

8

• Use special NUMA-Linux architecture to spread cache

coherence across multiple machines.

• Origin TM and Onyx2 TM Theory of Operations Manual

9

Linux limitations

• Linux currently maxes out to 4096 or so.

• Somewhat dated “Scaling Linux to the Extreme” paper

problems: cache contention could bring machine to halt

(if a global idle counter, each thread trying to increment

once a second)

lock contention, page cache

• What are the challenges? Locking contention?

• Benefits?

10

(Relatively) easy to code?

Easier to port code

Many libaries do it for you. For example, OpenBLAS.

11

Eventually you hit the limit

What’s the alternative?

12

Distributed System

• Communicate over a network

• Many systems each with own memory, communicate via

Message passing

• Each node has own copy of operating system

• How do they communicate?

13

Network Topology

• Packet-switching vs bus

• Ring, mesh, star, line, tree, fully connected

• Cube, hypercube

• Mesh networks and routing

• Routing. Fully connected? Crossbar?

14

Network Types

• Latency vs Bandwidth

• Top500 in Jun 2015:
interconnect #

infiniband FDR 160

10GB ethernet 83

infiniband QDR 73

gigabit ethernet 63

Cray Gemini 15
• Ethernet – 10/100/1Gb/10GB/40Gb/s

15

• InfiniBand – low latency, most common in

supercomputers

copper or fiber, GB/s

SDR DDR QDR FDR-10 FDR EDR

4x link 8 16 32 40 54 96

12x link 23 48 96 120 163 290
• Cray Gemini – Mesh/torus – 64Gb/s

• Fibrechannel

• Older: custom, Myrinet

16

Programming a distributed System

• Can you implement by hand?

• Sort of how you can use pthread directly?

• Yes, use ssh (like rsh) to run copy of your program on

all machines

• Then write custom network code to open sockets and

communicate among them all

• Network code is a pain

• Just crying out for abstraction

17

Message Passing Interface (MPI)

Abstraction for sending chunks of data around network.

You can put together an array of 100 floats, and say ”send

this to process Y” and like magic it appears there.

18

MPI

• Message Passing Interface

• Distributed Systems

• MPI 1.0 – 1994. MPI 3.0 – 2012

• MPI 1.2 widely used. MPI2.0 is complicated and

adoption not as high as it could be.

• MPICH – CH stands for Chameleon – Argonne and

Missippi State

19

• MVAPICH – from Ohio State, based on MPICH

• OpenMPI – merger of 3 MPI implementations: FT-

MPI from the University of Tennessee, LA-MPI from

Los Alamos National Laboratory, and LAM/MPI from

Indiana University

• Any other options? PVM was a predecessor

• Python Bindings, Java bindings, Matlab

20

MPI

Some references

https://computing.llnl.gov/tutorials/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

21

Writing MPI code

• #include "mpi.h"

• Over 430 routines

• use mpicc to compile

gcc or other compiler underneath, just sets up includes

and libraries for you.

• mpirun -n 4 ./test mpi

• MPI Init() called before anything else

• MPI Finalize() at the end

• Error handling – most errors just abort

22

Communicators

• You can specify communicator groups, and only send

messages to specific groups.

• MPI COMM WORLD is the default, means all processes.

23

Rank

• Rank is the process number.

• MPI Comm rank(MPI Comm comm, int size)

MPI Comm rank(MPI COMM WORLD, &rank);

• You can find the number of processes:

MPI Comm size(MPI Comm comm, int size)

24

Error Handling

• MPI SUCCESS (0) is good

• By default it aborts if any sort of error

• Can override this

25

Timing

• MPI Wtime(); wallclock time in double floating point.

For PAPI-like measurements

• MPI Wtick();

26

Point to Point Operations

• Buffering – what happens if we do a send but receiving

side not ready?

• Blocking – blocking calls returns after it is safe to modify

your send buffer. Not necessarily mean it has been sent,

may just have been buffered to send. Blocking receive

means only returns when all data received

• Non-blocking – return immediately. Not safe to change

buffers until you know it is finished. Wait routines for

27

this.

• Order – messages will not overtake each other. Send #1

and #2 to same receive, #1 will be received first

• Fairness – no guarantee of fairness. Process 1 and 2

both send to same receive on 3. No guarantee which

one is received

28

MPI Send, MPI Recv

• block – MPI Send(buffer,count,type,dest,tag,comm)

• non-block – MPI Isend(buffer,count,type,dest,tag,comm,request)

• block – MPI Recv(buffer,count,type,source,tag,comm,status)

• non-block – MPI Irecv(buffer,count,type,source,tag,comm,request)

• buffer – pointer to the data buffer

• count – number of items to send

29

• type – MPI predefines a bunch. MPI CHAR, MPI INT,

MPI LONG, MPI DOUBLE, etc.

can also create own complex data types

• destination – rank to send it to

• source – rank to receive from. Also can be

MPI ANY SOURCE

• Tag – arbitrary integer uniquely identifying message.

Can pick yourself. 0-32767 guaranteed, can be higher.

• Communicator – can specify subgroups. Usually use

30

MPI COMM WORLD

• status – status of message, a struct in C

• request – on non-blocking this is a handle to the request

that can be queried later to see that status

31

Fancier blocking send/receives

• Lots, with various type of blocking and buffer attaching

and synchronous/asynchronous

32

Sample code

/* MPI Send Example */

#include <stdio.h>

#include "mpi.h"

#define ARRAYSIZE 1024*1024

int main(int argc , char **argv) {

int numtasks , rank;

int result ,i;

int A[ARRAYSIZE];

MPI_Status Stat;

int count;

result = MPI_Init (&argc ,&argv);

if (result != MPI_SUCCESS) {

printf ("Error starting MPI program !.\n");

MPI_Abort(MPI_COMM_WORLD , result);

}

MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

33

MPI_Comm_rank(MPI_COMM_WORLD ,&rank);

printf("Number of tasks= %d My rank= %d\n",

numtasks ,rank);

if (rank ==0) {

/* Initialize Array */

printf("Initializing array\n");

for(i=0;i<ARRAYSIZE;i++) {

A[i]=1;

}

for(i=1;i<numtasks;i++) {

printf("Sending %d ints to %d\n",

ARRAYSIZE ,i);

result = MPI_Send(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

i, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

}

else {

34

result = MPI_Recv(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

0, /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: Received %d ints from task %d with tag %d \n",

rank , count , Stat.MPI_SOURCE , Stat.MPI_TAG);

}

int sum=0, remote_sum =0;

for(i=rank*(ARRAYSIZE/numtasks);i<(rank +1)*(ARRAYSIZE/numtasks);i++) {

sum+=A[i];

}

if (rank ==0) {

for(i=1;i<numtasks;i++) {

result = MPI_Recv (& remote_sum , /* buffer */

1, /* count */

MPI_INT , /* type */

35

MPI_ANY_SOURCE , /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: (%d) Received %d int from task %d with tag %d \n",

rank ,remote_sum ,count , Stat.MPI_SOURCE , Stat.MPI_TAG);

sum+= remote_sum;

}

printf("Total: %d\n",sum);

}

else {

printf("\tRank %d Sending %d\n",rank ,sum);

result = MPI_Send (&sum , /* buffer */

1, /* count */

MPI_INT , /* type */

0, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

MPI_Finalize ();

36

}

37

