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Announcements

• Midterm Next Thursday (March 11th)

More details/review in class Tuesday

• HW#4 Grades will be out soon

• HW#6 will be posted with extended deadline. MPI.
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HW#4 Review

• Low-level C is a pain. Things like passing pointers to

double-indexed arrays, and (void *) casting.

I’d like to say you’ll never see this, but if you ever get a

job doing Linux kernel or similar low level work there’s a

lot of this that goes on.

• Hopefully you’ll find OpenMP is a lot simpler.

• Some results on a 10848x10824 NASA image I found:
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bench Load convolve combine store

before 945,172 20,972,969 1,740,545 865,404

coarse(2) 952,647 10,752,946 1,785,945 882,353

fine 1 960,527 10,582,954 12,303,506 921,339

fine 2 5,418,575 6,255,203

fine 8 935,998 1,491,921 3,574,811 928,533

fine 16 729,125 2,097,431

fine 32 627,906 714,431
• Should see some speedup, even if not perfect.

Be sure your joins are *after* both threads started.

• Max speedup? Below, significant time in load/store
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combine so even if perfect convolution...

Load time: 98257

Convolve time: 871411

Combine time: 266956

Store time: 107583

• Question: was an example of deadlock.
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MPI continued

Some references

https://computing.llnl.gov/tutorials/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default
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Efficient way of getting data to all processes

• master send to each individual, take a while

• some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• use broadcast instead
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Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others
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MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)
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MPI Bcast()

• MPI Bcast (&buffer,count,datatype,root,comm)

• Sends data from the root process to each other process.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

• There is no need to receive; the root sends the data and

all other ranks will receive, just with the one command
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MPI Scatter() / MPI Gather()

• MPI Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

• Copies sendcnt sized chunks of sendbuf to each

processes recvbuf

• MPI Gather (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcount,recvtype,root,comm)

• Have to take care if area sending not a multiple of your

number of ranks
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MPI Reduce()

• MPI Reduce( void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, int

root, MPI Comm communicator)

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR
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◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom
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MPI Allgather()

Gathers, to all.

Equivalent of gathering back to root, then

rebroadcasting to all.
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MPI Allreduce()

• Like an MPI Reduce followed by an MPI Bcast

• MPI Allreduce( void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, MPI Comm

communicator)

• Once the reduction is done, broadcasts the results to all

processes
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MPI Reduce scatter()
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MPI Alltoall()

Scatter data from all to all
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MPI Scatterv()

Vector scatter. Send non-contiguous chunks. In addition

to regular scatter parameters, a list of start offsets and

lengths.

17



MPI Scan()

Lets you do partial reductions.
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Custom Data Types

You can create custom data types that aren’t the MPI

default, sort of like structures.

Open question: can you just cast your data into integers

and uncast on the other side?
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Groups vs Communicators

Can create custom groups if you don’t want to broadcast

to all.
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Virtual Topologies

• Map to a geometric shape (grid or graph)

• Doesn’t have to match underlying hardware

21



Examples

See the provided tar file with example code.
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Running MPI code

• mpiexec -np 4 ./mpi test

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.
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Send Example

• mpi send.c

• Run with mpirun -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a
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lot of work manually.
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Blocking vs NonBlock Example?

TODO
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Wtime Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value
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Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives
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Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value
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Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.
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Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

its rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)
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Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.
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