
ECE 574 – Cluster Computing
Lecture 11

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 March 2021

http://web.eece.maine.edu/~vweaver

Announcements

• Midterm Next Thursday (March 11th)

More details/review in class Tuesday

• HW#4 Grades will be out soon

• HW#6 will be posted with extended deadline. MPI.

1

HW#4 Review

• Low-level C is a pain. Things like passing pointers to

double-indexed arrays, and (void *) casting.

I’d like to say you’ll never see this, but if you ever get a

job doing Linux kernel or similar low level work there’s a

lot of this that goes on.

• Hopefully you’ll find OpenMP is a lot simpler.

• Some results on a 10848x10824 NASA image I found:

2

bench Load convolve combine store

before 945,172 20,972,969 1,740,545 865,404

coarse(2) 952,647 10,752,946 1,785,945 882,353

fine 1 960,527 10,582,954 12,303,506 921,339

fine 2 5,418,575 6,255,203

fine 8 935,998 1,491,921 3,574,811 928,533

fine 16 729,125 2,097,431

fine 32 627,906 714,431
• Should see some speedup, even if not perfect.

Be sure your joins are *after* both threads started.

• Max speedup? Below, significant time in load/store

3

combine so even if perfect convolution...

Load time: 98257

Convolve time: 871411

Combine time: 266956

Store time: 107583

• Question: was an example of deadlock.

4

MPI continued

Some references

https://computing.llnl.gov/tutorials/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

5

https://computing.llnl.gov/tutorials/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default

Efficient way of getting data to all processes

• master send to each individual, take a while

• some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• use broadcast instead

6

Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others

7

MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)

8

MPI Bcast()

• MPI Bcast (&buffer,count,datatype,root,comm)

• Sends data from the root process to each other process.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

• There is no need to receive; the root sends the data and

all other ranks will receive, just with the one command

9

MPI Scatter() / MPI Gather()

• MPI Scatter (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcnt,recvtype,root,comm)

• Copies sendcnt sized chunks of sendbuf to each

processes recvbuf

• MPI Gather (&sendbuf,sendcnt,sendtype,&recvbuf,

recvcount,recvtype,root,comm)

• Have to take care if area sending not a multiple of your

number of ranks

10

MPI Reduce()

• MPI Reduce(void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, int

root, MPI Comm communicator)

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR

11

◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom

12

MPI Allgather()

Gathers, to all.

Equivalent of gathering back to root, then

rebroadcasting to all.

13

MPI Allreduce()

• Like an MPI Reduce followed by an MPI Bcast

• MPI Allreduce(void* send data, void* recv data,

int count, MPI Datatype datatype, MPI Op op, MPI Comm

communicator)

• Once the reduction is done, broadcasts the results to all

processes

14

MPI Reduce scatter()

15

MPI Alltoall()

Scatter data from all to all

16

MPI Scatterv()

Vector scatter. Send non-contiguous chunks. In addition

to regular scatter parameters, a list of start offsets and

lengths.

17

MPI Scan()

Lets you do partial reductions.

18

Custom Data Types

You can create custom data types that aren’t the MPI

default, sort of like structures.

Open question: can you just cast your data into integers

and uncast on the other side?

19

Groups vs Communicators

Can create custom groups if you don’t want to broadcast

to all.

20

Virtual Topologies

• Map to a geometric shape (grid or graph)

• Doesn’t have to match underlying hardware

21

Examples

See the provided tar file with example code.

22

Running MPI code

• mpiexec -np 4 ./mpi test

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.

23

Send Example

• mpi send.c

• Run with mpirun -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a

24

lot of work manually.

25

Blocking vs NonBlock Example?

TODO

26

Wtime Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value

27

Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives

28

Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value

29

Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.

30

Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

its rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)

31

Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.

32

