ECE 574 — Cluster Computing
Lecture 11

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

4 March 2021

http://web.eece.maine.edu/~vweaver

Announcements

e Midterm Next Thursday (March 11th)
More details/review in class Tuesday
o HW+#4 Grades will be out soon
o HW+#6 will be posted with extended deadline. MPI.

HW#4 Review

e Low-level C is a pain. Things like passing pointers to
double-indexed arrays, and (void *) casting.

'd like to say you'll never see this, but if you ever get a

job doing Linux kernel or similar low level work there's a

ot of this that goes on.

e Hopefully you'll find OpenMP is a lot simpler.

e Some results on a 10848x10824 NASA image | found:

-y)

bench Load convolve combine store

before | 945,172 | 20,972,969 | 1,740,545 | 865,404
coarse(2) | 952,647 | 10,752,946 | 1,785,945 | 882,353

fine 1 |960,527 | 10,582,954 | 12,303,506 | 921,339

fine 2 5,418,575 | 6,255,203

fine 8 935,998 | 1,491,921 | 3,574,811 | 928,533

fine 16 729,125 2,007,431

fine 32 627,906 714,431

e Should see some speedup, even if not perfect.
Be sure your joins are *after™ both threads started.

e Max speedup?

Below, significant time in load/store

combine so even if perfect convolution...

Load time: 98257
Convolve time: 871411
Combine time: 266956
Store time: 107583

e Question: was an example of deadlock.

MPI continued

Some references
https://computing.llnl.gov/tutorials/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

https://computing.llnl.gov/tutorials/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default

Efficient way of getting data to all processes

e master send to each individual, take a while

e some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

e use broadcast instead

Collective Communication

e All must participate or there can be problems.
e Do not take tag arguments
e Can only operate on MPI defined data types, not custom
e Operations
o Synchronization — all processes wait
o Data Movement — broadcast, scatter-gather
scatter = take one structure and split among processes
gather = take data from all processes and combine it
o Reduction — one process combines results of all others

-y 7

MPI_Barrier()

e All processes wait at this point.

e MPT_Barrier (comm)

MPI1_Bcast()

e MPI_Bcast (&buffer,count,datatype,root,comm)
e Sends data from the root process to each other process.

e Is blocking; when encountering a Bcast all nodes wait
until they have received the data.

e [here is no need to receive; the root sends the data and
all other ranks will receive, just with the one command

MPI_Scatter() / MPI_Gather()

e MPI_Scatter (&sendbuf,sendcnt,sendtype,&recvbuf
recvcnt,recvtype,root,comm)

e Copies sendcnt sized chunks of sendbuf to each
processes recvbuf

e MPI_Gather (&sendbuf,sendcnt,sendtype,&recvbuf,
recvcount,recvtype,root,comm)

e Have to take care if area sending not a multiple of your
number of ranks

/Y 10

MPI_Reduce()

e MPI_Reduce(void* send_data, void* recv_data,
int count, MPI_Datatype datatype, MPI_Op op, in
root, MPI_Comm communicator)

e Operations
o MPI_MAX,MPI_MIN — max, min

o MPI_SUM — sum

o MPI_PROD - product

o MPI_LAND, MPI_BAND - logical /bitwise and
o MPI_LOR,MPI_BOR - logical /bitwise OR

/Y 11

o MPI_LXOR,MPI_BXOR - logical/bitwise XOR
o MPI_MAXLOC,MPI_MINLOC - value and location
o Can also create custom

12

MPI_Allgather()

Gathers, to all.

Equivalent of gathering back to root, then
rebroadcasting to all.

-y 13

MPI_Allreduce()

e Like an MPI_Reduce followed by an MPI|_Bcast

e MPI_Allreduce(void* send_data, void* recv_data
int count, MPI_Datatype datatype, MPI_Op op, MP
communicator)

e Once the reduction is done, broadcasts the results to all
Processes

-y 14

MPI_Reduce_scatter()

15

MPI_Alltoall()

Scatter data from all to all

16

MPI1_Scatterv()

Vector scatter. Send non-contiguous chunks. In addition
to regular scatter parameters, a list of start offsets and
lengths.

-y 17

MPI1_Scan()

Lets you do partial reductions.

18

Custom Data Types

You can create custom data types that aren't the MPI
default, sort of like structures.

Open question: can you just cast your data into integers
and uncast on the other side?

19

Groups vs Communicators

Can create custom groups if you don't want to broadcast
to all.

-y 20

Virtual Topologies

e Map to a geometric shape (grid or graph)

e Doesn't have to match underlying hardware

21

Examples

See the provided tar file with example code.

22

Running MPI code

e mpiexec —np 4 ./mpi_test

e You'll often see mpirun instead. Some implementations
have that, but it's not the official standard way.

/Y 23

Send Example

e mpi_send.c
e Run with mpirun -np 4 ./mpi_send

e Sends 1 million integers (each with value of 1) to each
node

e Each adds up 1/4th then sends only the sum (a single
int) back

e Notice this is a lot like pthreads where we have to do a

-y 24

lot of work manually.

25

Blocking vs NonBlock Example?

TODO

26

Wtime Example

e mpi_wtime.cC
e Same as previous example. but with timing

e Unlike PAPI, the time is returned as a floating point
value

-y 21

Barrier Example

e mpil_barrier.c
e Each machine sleeps some time based on rank

e All wait at barrier until last one arrives

28

Bcast Example

e mpil_bcast.c
e Same buffer on each machine

e At the broadcast function, one sends its version of the
buffer and the rest wait until they receive the value.

e In the end they all have the same value

-y 29

Scatter Example

e mpl_scatter.c

e Instead of sending all of A, breaks it into chunks and
sends it to B in each rank.

/Y 30

Gather Example

e mpili_gather.c

e Each rank has its own copy of A which it sets to entirely
its rank number

e Then a gather happens on rankO, of one int each. So
what should B have in it? (0, 1, 2, 3, ...)

-y 31

Reduce Example

e mpl_reduce.cC

e Instead of waiting in a loop for tasks finishing and then
adding up the results one by one, use a reduction instead.

e Many MPI routines are convenience things that could be
done by a sequence of separate commands.

-y 32

