
ECE 574 – Cluster Computing
Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 March 2021

http://web.eece.maine.edu/~vweaver


Announcements

• HW#4, HW#5: still grading

• HW#6 – will be posted, will be due the 19th

1



Midterm on 11 March 2021

• Online, open book and notes

• Take it during class time. Let me know if have any

conflicts.

• Easiest if you take it remotely. You can show up and

take it in person, but in that case have laptop and such,

won’t be handing out paper copies.

• I will monitor zoom for any questions

• Performance

◦ Speedup, Parallel efficiency

2



◦ Strong and Weak scaling

• Definition of Distributed vs Shared Memory

• Know why changing order of loops can make things

faster

• Pthread Programming

◦ Know about race condition, deadlock

◦ Know roughly the layout of a pthreads program.

(define pthread t thread structures, pthread create,

pthread join)

◦ Know why you’d use a mutex.

• OpenMP Programming

3



◦ parallel directive

◦ scope

◦ section

◦ for directive

• Know about MPI

4



HW#5 Review

• Have to put “parallel” either in separate directive, or in

sections.

• Also time measurement outside parallel area (time in

each section is the same with or without threads, the

difference is they can happen simultaneously). i.e. be

sure to measure wall clock, not user, time

• Don’t nest parallel! remove sections stuff for fine.

• Also, does it makes sense to parallelize the most inner

loop of 3?

5



• Also what if you mark variables private that shouldn’t

be? scope!

• Also if have sum marked private in inner loop, need

to make sure it somehow gets added on the outer

(reduction).

• Be careful with bracket placement. Don’t need one for

a for, for example.

• Also, remember as soon as you do parallel everything in

the brackets runs on X threads. So if you parallel, have

loops, then a for... those outer loops are each running

X times so you’re calculating everything X times over.

6



This isn’t a race condition because we don’t modify the

inputs so it doesn’t matter how many times we calc each

output.

• Does dynamic vs static vs chunksize affect our code? 9

muls and adds should take consistent size. When might

it not? Cache!

7



HW#6 Preview

• Suggested coarse implementation

◦ Get rank and size

◦ Load the jpeg. Only in Rank0. Could you load it in

all? Why or why not?

◦ Need to tell other processes the size of our images.

image.x, image.y, image.depth. Why? So can allocate

proper sized structures on each.

◦ How can do this? Just send 3 integers. Could set up

custom struct but not worth it. How send this array of

8



3 vars? Set up array. Bcast it? Send/receive to each,

one at a time? Which is most efficient?

◦ Allocate space for the output images
new_image.pixels=malloc(image.x*image.y*image.depth*sizeof(char ));

sobel_x.pixels

sobel_y.pixels

◦ Use MPI Bcast to broadcast image data from rank0

to other ranks. Note that Bcast acts as a send from

the root source (usually root 0) but as a receive on

all other ranks (there’s no need to separately have the

other ranks receive)
result = MPI_Bcast(image.pixels , /* buffer */

image.x*image.y*image.depth , /* count */

MPI_CHAR , /* type */

0, /* root source */

9



MPI_COMM_WORLD );

◦ Split up the work, you know your rank and total, so if

4 and you are #2, then you should calculate for X/4,

so 0..(X/4-1), (x/4)..(x/4*2-1), etc. How to handle

non-even multiple? Last rank should calc extra

◦ Once it is done, send back. How? MPI Gather();
MPI_Gather(new_image.pixels , /* source buffer */

sobel_x.depth*sobel_x.x*( sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

sobel_x.pixels , /* receive buffer */

sobel_x.depth*sobel_x.x*( sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD );

Note, it gathers from the beginning of the buffer, but

10



put it in the right place on the root. Also, how to

handle the leftover bit?

◦ Suggest you just do combine in rank#0, will in next

HW do more fine grained

◦ Write out result. Remember to only write out on

rank#0 (what happens if do so on all?)

11



Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

12



weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

13



MPI Debugging (HW#6) notes

• MPI is *not* shared memory

• Picture having 4 nodes, each running a copy of your

program *without* MPI.

Also picture the various MPI routines as a network socket

(or web browser query).

Things initialized the same in all will have same values,

no need to initialize.

Things initialized in only one node will need to be

somehow broadcast for the values to be the same in all.

14



• Problems debugging memory issues.

Valgrind should work, but Debian compiles MPI with

checkpoint support which breaks Valgrind :(

Mpirun supposed to have -gdb option, doesn’t seem to

work.

• What does work is mpiexec -n num xterm -e gdb

./your app but this depends on you running X11 plus

logging into Haswell-EP with X forwarding (-Y) enabled

• The bug most people hit is improper bounds, leading to

segfault. You can debug that with printfs of your bounds

• MPI does give useful error messages sometimes

15



• Some of the problem is malloc/calloc

16



Other MPI Notes

• MPI Gather( sendarray, 100, MPI INT, rbuf, 100,

MPI INT, root, comm);

rbuf ignored on all but root

• All collective ops are blocking by default, so you don’t

need an implicit barrier

• MPI Gather(), same as if each process did an

MPI Send() and the root note did in a loop

MPI Receive() incrementing the offset.

17



• MPI Gather() aliasing

cannot gather into same pointer, will get an aliasing

error

Can use MPI IN PLACE instead of the send buffer on

rank0.

Why is this an error? Partly because you cannot alias in

Fortran. Just avoids potential memory copying errors.

What happens if your gathers overlap?

• Can you handle non-even buffer sizes with MPI Gather?

No. Two options.

◦ One, just handle in one of other threads (either master

18



or send/receive from other)

◦ Two, use MPI Gatherv() where you specify the

displacement and sizes of what you want to gather

19



Reliability in HPC

Good reference is a class I took a long time ago, CS717 at

Cornell:

http://greg.bronevetsky.com/CS717FA2004/Lectures.html

20

http://greg.bronevetsky.com/CS717FA2004/Lectures.html


Sources of Failure

• Software Failure

◦ Buggy Code

◦ System misconfiguration

• Hardware Failure

◦ Loose wires

◦ Tin whiskers (lead-free solder)

◦ Lightning strike

◦ Radiation

◦ Moving parts wear out

21



• Malicious Failure

◦ Hacker attack

22



Types of fault

• Permanent Faults – same input will always result in same

failure

• Transient Faults – go away, temporary, harder to figure

out

23



What do we do on faults?

• Detect and recover?

• Just fail?

• Can we still get correct results?

24



Metrics

• MTBF – mean time before failure

• FIT (failure in Time)

One failure in billion hours. 1000 years MTBF is 114FIT.

Zero error rate is 0FIT but infinite MTBF Designers just

FIT because additive.

• Nines. Five nines 99.999% uptime (5.25 minutes of

downtime a year)

Four nines, 52 minutes. Six nines 31 seconds.

• Bathtub curve

25



Architectural Vulnerability factor

• Some bit flips matter less

• (branch predictor) others more (caches) some even more

(PC)

• Parts of memory that have dead code, unused values

26



Things you can do Hardware

27



Hardware Replication

• Lock step – Have multiple machines / threads running

same code in lock-step Check to see if results match. If

not match, problem. If replicated a lot, vote, and say

most correct is right result.

• RAID – (redundant array of inexpensive disks)

• Memory checksums – caches, busses

• Power conditioning, surge protection, backup generators,

UPS

28



• Hot-swappable redundant hardware

29



Lower Level

• Replicate units (ALU, etc)

• Replicate threads or important data wires

• CRCs and parity checks on all busses, caches, and

memories

30



Lower-Level Problems

31



Soft errors/Radiation

• Chips so small, that radiation can flip bits. Thermal and

Power supply noise too.

• Soft errors – excess charge from radiation. Usually not

permanent.

• Sometime called SEU (single event upset)

32



Radiation

• Neutrons: from cosmic rays, can cause ”silicon recoil”

Can cause Boron (doped silicon) to fission into Li and

alpha.

• Alpha particles: from radioactive decay

• Cosmic rays – higher up you are, more faults Denver

3-5x neutron flux than sea level. Denver more than here.

Airplanes. Satellites and space probes are radiation-

hardened due to this.

33



• Smaller devices, more likely can flip bit.

34



Shielding

• Neutrons: 3 feet concrete reduce flux by 50%

• alpha: sheet of paper can block, but problem comes

from radioactivity in chips themselves

35



Case Studies

• “May and Woods Incident” first widely reported problem.

Intel 2107 16k DRAM chips, problem traced to ceramics

packaging downstream of Uranium mine.

• “Hera Problem” IBM having problem. 210Po

contamination from bottle cleaning equipment.

• “Sun e-cache” Ultra-SPARC-II did not have ECC on

cache for performance reasons. High failure rate.

36



Hardware Fixes

• Using doping less susceptible to Boron fission

• Use low-radiation solder

• Silicon-on-Insulator

• Double-gate devices (two gates per transistor)

• Larger transistor sizes

• Circuits that handle glitches better.

• Memory fixes

◦ ECC code

◦ spread bits out. Right now can flip adjacent bits, flip

37



too many can’t correct.

◦ Memory scrubbing: going through and periodically

reading all mem to find bit flips.

38



Extreme Testing

• Single event upset characterization of the Pentium MMX

and Pentium II microprocessors using proton irradiation”,

IEEE Transactions on Nuclear Science, 1999.

• Pentium II, took off-shelf chip and irradiated it with

proton. Only CPU, rest shielded with lead. Irradiate

from bottom to avoid heatsink

• Various errors, freeze to blue screen. no power glitches

or “latchup” 85% hangs, 14% cache errors no ALU or

39



FPU errors detected.

40


