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Announcements

• HW#7 will be posted

• Don’t forget project topics due next Thursday!
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Notes on HW#5

• Were supposed to use sections directive for the coarse

code

• Should parallelize your biggest loop, unless it is auto-

collapsing, parallizing the colors loop of 0..3 won’t scale

very well

This is why some were seeing bigger benefits of combine

vs convolve

• Loop indices don’t need to be marked as private,
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OpenMP assumes they are (so don’t change their value

outside the for statement)
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Pi cluster

• 1 head node (16GB SD card), 24 sub-nodes. One

currently seems to be down (reliability!)

• Read up on the cluster here:

https://www.mdpi.com/2079-9292/5/4/61/htm

• Added your accounts, same password as haswell-ep (via

hashes)

• Try not to use up too much disk space

• Also note the SD card is sorta slow, which with the

network affects scaling a bit.
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• Use slurm

• The batch scripts I gave you have a timeout of 5 minutes

per job. Last time some people’s code went crazy and

ran forever and other people’s jobs never ran

• Use sinfo or squeue to see cluster and job stats

• Use scancel to cancel a job

• If things going poorly, contact me

• Did update PAPI on all nodes which should be working
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MPI and slurm

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32

6



nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)
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Why use slurm?

• Can set account to charge

• Can handle checkpointing

• Can set constraints (run on machine with gpu, certain

proc type)

• Contiguous allocations

• CPU freq, power capping

• Licenses avail (things like Matlab etc)

• Memory avail
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Graphics and Video Cards
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Old CRT Days

• Electron gun

• Horizontal Blank, Vertical Blank
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LCD Displays (sic)

• Crystals twist in presence of electric field

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT
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• Circuitry inside to scale image and other post-processing

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires no

power to hold state
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Coding for CRTs

• Atari 2600 – only enough RAM to do one scanline at a

time

• Apple II – video on alternate cycles, refresh RAM for

free

• Bandwidth key issue. SNES / NES, tiles. Double

buffering vs only updating during refresh

13



Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay
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Modern Graphics Cards

• Can draw a lot of power

• 2D (optional these days)

• 3D

• Video decoders
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Interface

• Integrated or stand alone

• Integrated traditionally less capable, but changing. Share

Memory bandwidth, take memory.
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Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

higher frequency)
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Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus in x86 systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150W and more

Can transfer 8GT/s (giga-transfers) a second

In general PCIe is limiting factor to getting data to GPU.
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Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p
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or 1920x1200 at 60Hz. TMDS differential signaling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD
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Interfaces

• OpenGL – SGI (Khronos)

• DirectX – Microsoft (Direct3d)

• Vulkan (sort of next gen OpenGL. Lower level, closer to

hardware)

• Metal – from Apple
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GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing
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GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?
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Other Accelerator Options

• XeonPhi – came out of the larabee design (effort to do a

GPU powered by x86 chips). Large array of x86 chips(p5

class on older models, atom on newer) on PCIe card.

Sort of like a plug-in mini cluster. Runs Linux, can ssh

into the boards over PCIe. Benefit: can use existing x86

programming tools and knowledge.

• FPGA – can have FPGA accelerator. Only worthwhile

if you don’t plan to reprogram it much as time delay in

reprogramming. Also requires special compiler support
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(OpenMP?)

• ASIC – can have hard-coded custom hardware for

acceleration. Expensive. Found in BitCoin mining?

• DSPs – can be used as accelerators
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Why GPUs?

• Newer example:

– Cascade Lake, 1 TFLOP (64-bit floating point)

– NVIDIA 3090 36 TFLOPs

• Older example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS
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Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls
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Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one
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GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel
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GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers
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Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.
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3D Graphics Rundown

• Rasterization (traditional 3d cards)

◦ Send vertices to card

◦ Triangles, normals

◦ Project to 2d screen

◦ Broken up to pixels and shaded/textured

◦ Clipping, depth

• Ray-tracing

◦ Light is traced to eye (or the reverse)

• Ray-casting
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Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.
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Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly
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read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility
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GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment
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Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write
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Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color
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◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows
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GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y
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Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:
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◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)
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Example Shader 3.0 (DX9) capatbilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)
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