
ECE 574 – Cluster Computing
Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 March 2021

http://web.eece.maine.edu/~vweaver


Announcements

• HW#7 will be posted

• Don’t forget project topics due next Thursday!

1



Notes on HW#5

• Were supposed to use sections directive for the coarse

code

• Should parallelize your biggest loop, unless it is auto-

collapsing, parallizing the colors loop of 0..3 won’t scale

very well

This is why some were seeing bigger benefits of combine

vs convolve

• Loop indices don’t need to be marked as private,

2



OpenMP assumes they are (so don’t change their value

outside the for statement)

3



Pi cluster

• 1 head node (16GB SD card), 24 sub-nodes. One

currently seems to be down (reliability!)

• Read up on the cluster here:

https://www.mdpi.com/2079-9292/5/4/61/htm

• Added your accounts, same password as haswell-ep (via

hashes)

• Try not to use up too much disk space

• Also note the SD card is sorta slow, which with the

network affects scaling a bit.

4

https://www.mdpi.com/2079-9292/5/4/61/htm


• Use slurm

• The batch scripts I gave you have a timeout of 5 minutes

per job. Last time some people’s code went crazy and

ran forever and other people’s jobs never ran

• Use sinfo or squeue to see cluster and job stats

• Use scancel to cancel a job

• If things going poorly, contact me

• Did update PAPI on all nodes which should be working

5



MPI and slurm

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32

6



nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)

7



Why use slurm?

• Can set account to charge

• Can handle checkpointing

• Can set constraints (run on machine with gpu, certain

proc type)

• Contiguous allocations

• CPU freq, power capping

• Licenses avail (things like Matlab etc)

• Memory avail

8



Graphics and Video Cards

9



Old CRT Days

• Electron gun

• Horizontal Blank, Vertical Blank

10



LCD Displays (sic)

• Crystals twist in presence of electric field

• Asymmetric on/off times

• Passive (crossing wires) vs Active (Transistor at each

pixel)

• Passive have to be refreshed constantly

• Use only 10% of power of equivalent CRT

11



• Circuitry inside to scale image and other post-processing

• Need to be refreshed periodically to keep their image

• New “bistable” display under development, requires no

power to hold state

12



Coding for CRTs

• Atari 2600 – only enough RAM to do one scanline at a

time

• Apple II – video on alternate cycles, refresh RAM for

free

• Bandwidth key issue. SNES / NES, tiles. Double

buffering vs only updating during refresh

13



Old 2D Video Cards

• Framebuffer (possibly multi-plane), Palette

• Dual-ported RAM, RAMDAC (Digital-Analog Converter)

• Interface (on PC) various io ports and a 64kB RAM

window

• Mode 13h

• Acceleration – often commands for drawing lines,

rectangles, blitting sprites, mouse cursors, video overlay

14



Modern Graphics Cards

• Can draw a lot of power

• 2D (optional these days)

• 3D

• Video decoders

15



Interface

• Integrated or stand alone

• Integrated traditionally less capable, but changing. Share

Memory bandwidth, take memory.

16



Video RAM

• VRAM – dual ported. Could read out full 1024Bit

line and latch for drawing, previously most would be

discarded (cache line read)

• GDDR3/4/5 – traditional one-port RAM. More

overhead, but things are fast enough these days it is

worth it.

• Confusing naming, GDDR3 is equivalent of DDR2 but

with some speed optimization and lower voltage (so

higher frequency)

17



Busses

• DDC – i2c bus connection to monitor, giving screen size,

timing info, etc.

• PCIe (PCI-Express) – most common bus in x86 systems

Original PCI and PCI-X was 32/64-bit parallel bus

PCIe is a serial bus, sends packets

Can power 25W, additional power connectors to supply

can have 75W, 150W and more

Can transfer 8GT/s (giga-transfers) a second

In general PCIe is limiting factor to getting data to GPU.

18



Connectors

CRTC (CRT Controller) Can point to same part of memory

(mirror) or different.

• RCA – composite/analog TV

• VGA – 15 pin, analog

• DVI – digital and/or analog. DVI-D, DVD-I, DVD-A

• HDMI – compatible with DVI (though content

restrictions). Also audio. HDMI 1.0 – 165MHz, 1080p

19



or 1920x1200 at 60Hz. TMDS differential signaling.

Packets. Audio sent during blanking.

• Display Port – similar but not the same as HDMI

• Thunderbolt – combines PCIe and DisplayPort.

Intel/Apple. Originally optical, but also Copper. Can

send 10W of power.

• LVDS – Low Voltage Differential Signaling – used to

connect laptop LCD

20



Interfaces

• OpenGL – SGI (Khronos)

• DirectX – Microsoft (Direct3d)

• Vulkan (sort of next gen OpenGL. Lower level, closer to

hardware)

• Metal – from Apple

21



GPUs

• Display memory often broken up into tiles (improves

cache locality)

• Massively parallel matrix-processing CPUs that write to

the frame buffer (or can be used for calculation)

• Texture control, 3d state, vectors

• Front-buffer (written out), Back Buffer (being rendered)

Z-buffer (depth)

• Originally just did lighting and triangle calculations. Now

shader languages and fully generic processing

22



GPGPUs

• Interfaces needed, as GPU companies do not like to

reveal what their chips due at the assembly level.

– CUDA (Nvidia)

– OpenCL (Everyone else) – can in theory take parallel

code and map to CPU, GPU, FPGA, DSP, etc

– OpenACC?

23



Other Accelerator Options

• XeonPhi – came out of the larabee design (effort to do a

GPU powered by x86 chips). Large array of x86 chips(p5

class on older models, atom on newer) on PCIe card.

Sort of like a plug-in mini cluster. Runs Linux, can ssh

into the boards over PCIe. Benefit: can use existing x86

programming tools and knowledge.

• FPGA – can have FPGA accelerator. Only worthwhile

if you don’t plan to reprogram it much as time delay in

reprogramming. Also requires special compiler support

24



(OpenMP?)

• ASIC – can have hard-coded custom hardware for

acceleration. Expensive. Found in BitCoin mining?

• DSPs – can be used as accelerators

25



Why GPUs?

• Newer example:

– Cascade Lake, 1 TFLOP (64-bit floating point)

– NVIDIA 3090 36 TFLOPs

• Older example

– Raspberry Pi, 700MHz, 0.177 GFLOPS

– On-board GPU: Video Core IV: 24 GFLOPS

26



Key Idea

• using many slimmed down cores

• have single instruction stream operate across many cores

(SIMD)

• avoid latency (slow textures, etc) by working on another

group when one stalls

27



Latency vs Throughput

• CPUs = Low latency, low throughput

• GPUs = high latency, high throughput

• CPUs optimized to try to get lowest latency (caches);

with no parallelism have to get memory back as soon as

possible

• GPUs optimized for throughput. Best throughput for all

better than low-latency for one

28



GPU Benefits

• Specialized hardware, concentrating on arithmetic.

Transistors for ALUs not cache.

• Fast 32-bit floating point (16-bit?)

• Driven by commodity gaming, so much faster than would

be if only HPC people using them.

• Accuracy? 64-bit floating point? 32-bit floating point?

16-bit floating point? Doesn’t matter as much if color

slightly off for a frame in your video game.

• highly parallel

29



GPU Problems

• optimized for 3d-graphics, not always ideal for other

things

• Need to port code, usually can’t just recompile cpu code.

• Companies secretive.

• serial code

• a lot of control flow

• lot of off-chip memory transfers

30



Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

31



3D Graphics Rundown

• Rasterization (traditional 3d cards)

◦ Send vertices to card

◦ Triangles, normals

◦ Project to 2d screen

◦ Broken up to pixels and shaded/textured

◦ Clipping, depth

• Ray-tracing

◦ Light is traced to eye (or the reverse)

• Ray-casting

32



Older / Traditional GPU Pipeline

• In old days, fixed pipeline (lots of triangles).

• Modern chips much more flexible, but the old pipeline

can still be implemented in software via the fancier

interface.

33



Older / Traditional GPU Pipeline

• CPU send list of vertices to GPU.

• Transform (vertex processor) (convert from world space

to image space). 3d translation to 2d, calculate lighting.

Operate on 4-wide vectors (x,y,z,w in projected space,

r,g,b,a color space)

• Rasterizer – transform vertexes/vectors into a grid.

Fragments. break up to pixels and anti-alias

• Shader (Fragment processor) compute color for each

pixel. Use textures if necessary (texture memory, mostly

34



read)

• Write out to framebuffer (mostly write)

• Z-buffer for depth/visibility

35



GPGPUs

• Started when the vertex and fragment processors became

generically programmable (originally to allow more

advanced shading and lighting calculations)

• By having generic use can adapt to different workloads,

some having more vertex operations and some more

fragment

36



Graphics vs Programmable Use

Vertex Vertex Processing Data MIMD processing
Polygon Polygon Setup Lists SIMD Rasterization

Fragment Per-pixel math Data Programmable SIMD
Texture Data fetch, Blending Data Data Fetch
Image Z-buffer, anti-alias Data Predicated Write

37



Shader Programming

• There are competitions. Also see shadertoy.com

• Vertex Shader

◦ Vertex transform

◦ Object space to clip space

◦ Compute colors, normals, texture co-ords

◦ Can displace/distort (move vertices: wave flag)

◦ Can animate (move vertices: move fish)

• Fragment Shader

◦ Compute and color

38

shadertoy.com


◦ Get data from vorteces and textures

◦ Can make better materials. Glossy, reflections, bumpy,

shadows

39



GLSL Shader Programming

• Similar to C code

• Based on OpenGL

• vertex

◦ Each time screen drawn main() called once per vertex

◦ Massively parallel

◦ Have vars. Can get positions

• Fragment

◦ Each time screen drawn main() called once per pixel

◦ Can get x/y

40



Example Shader 3.0 (DX9) Capabilities –
Vertex Processor

• They are up to Pixel Shader 5.0 now

• 512 static / 65536 dynamic instructions

• Up to 32 temporary registers

• Simple flow control

• Texturing – texture data can be fetched during vertex

operations

• Can do a four-wide SIMD MAD (multiply ADD) and a

scalar op per cycle:

41



◦ EXP, EXPP, LIT, LOGP (exponential)

◦ RCP, RSQ (reciprocal, r-square-root)

◦ SIN, COS (trig)

42



Example Shader 3.0 (DX9) capatbilities–
Fragment Processor

• 65536 static / 65536 dynamic instructions (but can time

out if takes too long)

• Supports conditional branches and loops

• fp32 and fp16 internal precision

• Can do 4-wide MAD and 4-wide DP4 (dot product)

43


